
Real-Time Workshop®

 For Use with Real-Time Workshop®

 Embedded Coder

Module Packaging Features
Version 4

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Embedded Coder Module Packaging Features
 COPYRIGHT 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2004 Online only Version 4.0 (Release 14)

i

Contents

1
Getting Started

Introduction . 1-2

Opening Model with Desired Settings 1-4
Opening an Empty Model with Initial MPF Settings 1-5
Opening an Empty Model That Uses Settings from
Another Model . 1-6
Opening an Existing Model That Uses Saved MPF Settings . . 1-7

Selecting the Desired MPF Procedure 1-8

2
Selecting and Defining Templates

Introduction . 2-2

Selecting Preexisting Templates . 2-5
Generating Code and Inspecting Files . 2-7

Defining Templates . 2-9
Example Template and Its Generated File 2-10

3
Managing Data Dictionary

Introduction . 3-2

Registering User Data Types . 3-4

ii Contents

Registering User Object Types . 3-10

Adding Simulink Data Objects to the Dictionary 3-11
Importing External Data Objects . 3-11
Adding Simulink Data Objects with Data Object Wizard 3-13
Setting Property Values . 3-15

Applying Naming Rules to Identifiers Globally 3-19
Defining Rules That Change All #defines 3-20
Defining Rules That Change All Parameter Names 3-21
Defining Rules That Change All Signal Names 3-22

Applying User Data Types to Signal Objects
in the Generated Code . 3-24

Inspecting Code and Editing the Dictionary 3-27

4
Customizing with Additional Options

Ensuring Delimiter Is Specified for All #Includes 4-2

Selecting Source That Initializes Signals 4-3

Adding Custom Comments . 4-4

Adding Global Comments . 4-6

5
Managing File Placement of Data Definitions and

Declarations

Introduction . 5-2

iii

Priority and Usage . 5-3
Read-Write Priority . 5-4
Global Priority . 5-7
Remaining Priorities . 5-8

Example Settings . 5-10

A
Referenced Tables

MPF-Related Panes on Configuration Dialog Box A-2

Template Symbols and Rules . A-13

Parameter and Signal Properties . A-23

Interdependent Settings . A-37

Index

iv Contents

1

Getting Started

Introduction (p. 1-2) Explains the module packaging features (MPF) of
Real-Time Workshop Embedded Coder.

Opening Model with Desired Settings
(p. 1-4)

Explains the different ways to open a model with the
desired configuration settings.

Selecting the Desired MPF Procedure
(p. 1-8)

Identifies the main MPF procedures that are provided in
subsequent chapters of this guide.

1 Getting Started

1-2

Introduction
The Real-Time Workshop® Embedded Coder generates C code for a Simulink®
or Stateflow® model. This document discusses the module packaging features
(MPF) of Real-Time Workshop Embedded Coder.

With MPF, you can

• Package the generated code into the desired number of .c and .h files.

• Control the internal organization of each of the generated files. For example,
for readability, your company may have software standards that define
where to place comments and sections of code within files.

• Control whether or not the generated files contain definitions for a model’s
global identifiers. And, if definitions exist, you determine the files in which
the code generator places them. Also, you can specify the generated files
where the code generator places global data (extern) declarations.

In addition to meeting such packaging needs, MPF allows you to implement
these and other features to meet your needs:

• Register user-defined data types.

• Customize comments.

• Locate variables in target memory where desired.

By providing dialog boxes, user-definable templates and the ability to use
M-scripts, MPF allows you to implement these and other features discussed in
this document to meet your special needs.

Introduction

1-3

Note The term “module” (in “module packaging features”) refers to one or
more models. For example, a module might be named “Fuel” and the model
files associated with it might be named open_loop_fuel.mdl and
closed_loop_fuel.mdl. Thus, “module” captures the fact that many users
generate code for a model that is a part of a multimodel system. Using MPF,
one user generates code for one model at a time. The term “packaging” refers
to the ability to organize files.

Note When this document refers to a variable, it follows the distinction made
in C programming texts between declaring and defining. Declaring names the
variable and specifies its type, but does not allocate memory. Defining names,
specifies the type, and allocates memory for the variable. A variable is
declared in one of two ways: By placing an extern statement in a .h file or by
placing the extern statement at the top of the .c file that references that
variable. A variable is defined in a .c file.

Production-Ready

C

Source Code

Legacy Code

Third-Party
Software

Target Memory

Generates

- deterministic multirate scheduler

- single and multiple instance

- floating-point code

- integer only code

- S-function wrappers

- ASAP 2 data export file

- HTML report

Real-Time Workshop Embedded Coder Features

Dialog boxes, User-defined
templates and M-scripts

User-defined organization

Optimizes data initialization

Reduces ROM

Module Packaging Features

Module Packaging Features in Code-Generation Process

1 Getting Started

1-4

Opening Model with Desired Settings
Each model you open has certain settings associated with it that are indicated
on several panes of the Configuration Parameters dialog box, like that shown
below.

Note While the model and Configuration Parameters dialog box are open,
you can save the Configuration Parameters dialog box settings by saving the
model in Simulink. When you reopen that model, it will have these settings.

Select from the following to open the Configuration Parameters dialog box
with the desired settings:

• “Opening an Empty Model with Initial MPF Settings” on page 1-5

• “Opening an Empty Model That Uses Settings from Another Model” on
page 1-6

• “Opening an Existing Model That Uses Saved MPF Settings” on page 1-7

Opening Model with Desired Settings

1-5

Opening an Empty Model with Initial MPF Settings
This procedure opens an empty model and explains how to configure settings
on the Configuration Parameters dialog box so that all module packaging
features are available:

1 Start MATLAB.

2 Click the Simulink button on the toolbar. The Simulink Library Browser
opens.

3 From the File menu, open an empty model using the New command. In this
case, the settings on the Configuration Parameters dialog box are the
default settings. To make all of the module packaging features available, you
must change some of these default settings, by following the steps below.
Most users should do this.

4 From the Simulation menu, click Configuration Parameters., or use the
short cut Ctrl+E.

5 On the left pane, select Optimization. The Optimization pane appears on
the right.

6 Ensure that the Inline parameters check box is selected, and then click the
Apply button if it is available.

7 Click Solver on the left pane.

8 In the Type field, ensure that Fixed-step is selected.

9 Click General under Real-Time Workshop on the left pane. The General
pane appears on the right.

10 In the RTW system target file field, select the appropriate ert.tlc., and
click OK.

11 Ensure that the Ignore custom storage classes check box is cleared.

12 Click Comments under Real-Time Workshop on the left pane. The
Comments pane appears on the right.

1 Getting Started

1-6

13 Ensure that the Include comments check box is selected, and then click the
Apply button if it is available.

Now you can start a new procedure by going to “Selecting the Desired MPF
Procedure” on page 1-8, or return to a procedure.

Opening an Empty Model That Uses Settings from
Another Model
This procedure opens the initial Configuration Parameters dialog box for an
empty model. The settings are those transferred from another model:

1 Start MATLAB.

2 Click the Simulink button on the toolbar. The Simulink Library Browser
opens.

3 On the File menu, open an empty model using the New command.

4 On the File menu, open an existing model that has the MPF settings you
want to transfer to the empty model.

5 From the Tools menu, click Model Explorer. Both model names appear in
the left pane.

6 Expand the name of the existing model in the left pane.

7 Select Configuration, and drag and drop it onto the name of the new model
in the left pane.

8 Expand the name of the new model in the left pane. Notice there are two
configurations. The one you just copied is on the bottom.

9 Right click the Configuration on the bottom and select Active. The new
model now has the settings of the existing model.

10 If desired, change the name of the new Configuration on the right pane in
the Name field.

11 Accept or edit the remaining settings on the right pane as desired.

Opening Model with Desired Settings

1-7

12 From the File menu, click Save As to save the empty model and its MPF
settings with the desired filename and directory path.

Proceed to “Selecting the Desired MPF Procedure” on page 1-8, or return to a
procedure.

Opening an Existing Model That Uses Saved MPF
Settings
This procedure opens an existing model. The settings on the Configuration
Parameters dialog box are those made in the previous session for this model,
even if MATLAB was closed:

1 Start MATLAB.

2 On the File menu, open the desired existing model using the Open
command.

1 Getting Started

1-8

Selecting the Desired MPF Procedure
The following chapters document the MPF procedures. Each procedure has an
explanation, followed by the steps to implement it.Follow the desired
procedure:

• Chapter 2, “Selecting and Defining Templates”

• Chapter 3, “Managing Data Dictionary”

• Chapter 4, “Customizing with Additional Options”

• Chapter 5, “Managing File Placement of Data Definitions and Declarations”

Note Some MPF settings are interdependent. These are identified in
Chapter 5, “Managing File Placement of Data Definitions and Declarations.”
That chapter explains how these interdependent MPF settings manage file
placement of data definitions and declarations, their priorities and
frequencies of use.

2

Selecting and Defining
Templates

Introduction (p. 2-2) Explains what a template is.

Selecting Preexisting Templates
(p. 2-5)

Explains how to select default templates or user-defined
templates that already exist.

Defining Templates (p. 2-9) Explains how to create a new template or edit an existing
template.

2 Selecting and Defining Templates

2-2

Introduction
You can select and define (create) templates so that the code you generate is
organized the way you want. A template defines exactly where all parts of a
generated file’s contents will be placed. Then, when you instruct Real-Time
Workshop Embedded Coder to generate code, it will organize all generated
files according to the templates you selected.

The table below lists all of the files that Real-Time Workshop Embedded
Coder generates, and the supplied MPF templates that organize them. The
MPF template files are code_c_template.cgt, code_h_template.cgt,
data_c_template.cgt, and data_h_template.cgt.

Template files are grouped into three types: code, data, and custom.

A Code template organizes all of the generated files that, primarily, contain
functions but not identifiers. The source code template organizes C code files.
These include, for example, the main .c or any of the .c files that contain
functions that Real-Time Workshop Embedded Coder generates for the open
model. The quantity and filenames of these .c files are based on the function
partitioning selected in Simulink for the model. See “Nonvirtual Subsystem
Code Generation” in the Real-Time Workshop documentation and
“Generated Code Modules and File Packaging” in the Real-Time Workshop
Embedded-Coder documentation. There will always be at least one .c file
generated that contains the model’s functions. The code generator uses this

Table 2-1: Generated Files and Templates That Organize Them

Generated
File

example_
banner.
cgt

code_c_
template.
cgt

code_h_
template.
cgt

data_c_
template._
cgt

data_h_
template.
cgt

example_
file_
process_
template.
tlc

your_code.c
file or files

x x x

your_code.h file x x x

your_data.c file x x x

your_date.h file x x x

Introduction

2-3

one source code template that you select to organize all of the function .c files,
regardless of how many there are for this model. The header code template,
on the other hand, organizes the .h file that includes the prototypes of these
functions.

A Data template organizes all of the generated files that contain only
identifiers (data), not functions (code). The source data template organizes
the .c file that contains definitions of variables of global scope. The header
data template organizes the .h file that can contain declarations to those
definitions.

A Custom template has priority over the code and data templates in
organizing the generated files. As its name suggests, this template is for
advanced users who want to customize how the generated files are organized,
by using this one template. A custom template lets you

• Generate virtually any type of source (.c) or header (.h) file.

• Organize generated code into sections (such as #include preprocessor
directives, typedef statements, functions, and more).

• Generate code to call model functions such as model_initialize and
model_step.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the files being generated from it.

2 Selecting and Defining Templates

2-4

The chapter has two main subprocedures:

• “Selecting Preexisting Templates” on page 2-5 describes how to select
preexisting code and data templates.

• “Defining Templates” on page 2-9 describes how to create your own code or
data templates.

For details describing the custom template, see the discussion of Custom File
Processing Templates in the Real-Time Workshop Embedded Coder
documentation.

Selecting Preexisting Templates

2-5

Selecting Preexisting Templates
Fields on the Templates pane allow you to specify template files that
Real-Time Workshop Embedded Coder will use to organize all of the
generated .c or .h files:

1 From the Simulation menu, click Configuration Parameters.

2 Click Templates under Real-Time Workshop on the left pane. The
templates pane now appears on the right. For an explanation of fields on
this pane, see Table A-1, MPF Elements on Configuration Parameters
Panes, on page A-2.

Note A directory path to the MPF templates is created during installation
in the MATLAB folder. It is toolbox\rtw\targets\mpt\mpt. For a filename
that you typed, that filename must be in either the current MATLAB
working directory or on the MATLAB path.

3 In the Source file (*.c) template field of the Code templates pane, select
the desired filename. The supplied MPF source file template is
code_c_template.cgt. Real-Time Workshop Embedded Coder will use
this file to organize the .c file or files that contain the source code for the
model’s functions.

4 In the Header file (*.h) template field of the Code templates pane, select
the desired filename. The supplied MPF header file template is
code_h_template.cgt. Real-Time Workshop Embedded Coder will use
this file to organize the .h header file that contains the model’s function
prototypes.

5 In the Source file (*.c) template field of the Data templates pane, select
the desired filename. The supplied MPF source file template is
data_c_template.cgt. Real-Time Workshop Embedded Coder will use
this file to organize the .c file that contains the definitions of variables of
global scope.

6 In the Header file (*.h) template field of the Data templates pane, select
the desired filename. The supplied MPF header file template is

2 Selecting and Defining Templates

2-6

data_h_template.cgt. Real-Time Workshop Embedded Coder will use
this file to organize the .h file that contains declaration statements
(extern, typedef, #define).

If you want to use a custom template, follow the “Custom File Processing”
instructions in the Real-Time Workshop Embedded Coder documentation.
Otherwise, proceed to the next step.

7 Click Apply to save all your choices on the pane and keep it open. (Clicking
OK would save the choices but close the pane.)

Now you can generate files.

Selecting Preexisting Templates

2-7

Generating Code and Inspecting Files
You have selected the desired templates. Now you can generate code and
inspect the files to ensure they are what you want:

1 In the Configuration Parameters dialog box, click Real-Time Workshop
on the left pane.

2 In the Documentation pane, select the Generate HTML report check
box.

Note When you select the Generate HTML report check box, Real-Time
Workshop Embedded Coder automatically selects the two check boxes under
it: Include hyperlinks to model and Launch report after code generation
completes. For large models, you may find that HTML report generation
takes longer than you want, after performing step 4 below. In this case,
consider clearing the Include hyperlinks to model check box. The report
will be generated faster.

3 On the Configuration Parameters dialog box, select the Generate code
only check box. The Build button changes to Generate code.

Note The generate code process generates the .c and .h files. The build
process adds compiling and linking to generate the executable. For details on
build, see “Steps in the Build Process” in the Real-Time Workshop
documentation.

4 Click the Generate code button. After a moment, Real-Time Workshop
Embedded Coder creates all files according to the Simulink partitioning for
the model. It organizes each file according to the respective template you
have chosen. The HTML report appears, listing the generated files on the
left pane (under Generated Source Files).

5 To inspect a file, click its filename on this window.

2 Selecting and Defining Templates

2-8

6 If you want a file to be organized using a different existing template, close
the file, and repeat the relevant steps in “Selecting Preexisting Templates”
on page 2-5.

7 If you want to change a template, or create a new one, close the file, and
follow “Defining Templates” on page 2-9.

Defining Templates

2-9

Defining Templates
Follow this procedure to create a new template or edit an existing template.
When creating a new template, we recommend that you modify its supplied
template and save it with a new filename. Templates have the extension
.cgt. A default path to templates is created during installation in the
MATLAB folder: toolbox\rtw\targets\mpt\mpt. So templates are located
there (unless you changed this path). For a filename typed in a template field
on the Templates pane to be selected, the file must be in either the current
MATLAB work directory or on the MATLAB path. For an example that
compares a template with its associated generated file, see “Example
Template and Its Generated File” on page 2-10:

1 If the Templates pane of the Configuration Parameters dialog box is not
open, open it by selecting Configuration Parameters on the Simulation
menu, and then selecting Templates on the left pane. The Templates pane
now appears on the right, like that shown in “Introduction” on page 2-2.
Each Stateflow or Simulink model can have up to five types of templates
from which .c or .h files are generated. These templates are accessible on
this pane. Table 2-1, Generated Files and Templates That Organize Them,
on page 2-2, identifies all the files that Real-Time Workshop Embedded
Coder generates and the supplied templates that organize each file.
Table A-1, MPF Elements on Configuration Parameters Panes, on
page A-2, describes the supplied code and data templates.

2 To edit a code or data template, first type its filename in the desired
template field on the Templates pane, or select it using the Browse
button. Then click Edit. The file opens in an editor. The location of a
template symbol in one of the MPF template files identified in Table 2-1,
Generated Files and Templates That Organize Them, on page 2-2
determines where the items associated with the symbols are located in the
generated file, according to certain rules.

3 Modify (edit) the template file as desired, while consulting the following
tables:

• Table A-2, Template Symbols, on page A-13

• Table A-3, Parent-Child Relationships of Template Symbols, on page A-19

• Table A-4, Rules for Modifying or Creating a Template, on page A-21

2 Selecting and Defining Templates

2-10

Note In the next step, performing a Save operation on an existing template
file will replace the original. This is desirable if your intent is to update an
existing user-defined template. If you are modifying a supplied template,
perform a Save As operation, not a Save.

4 Perform a Save or Save As operation, naming the template file as desired.

5 Follow “Selecting Preexisting Templates” on page 2-5, selecting the
template you just defined.

6 Click Generate Code.

7 Inspect the generated file or files to see how the template organized them.

8 Repeat this procedure only if the organization of the generated file or files
is not acceptable.

Note Practice is the best way to learn how a user-defined template affects
the organization of a generated file. Create a template. Generate code.
Compare the two. Repeat this process to see the results that changes on the
template have on its respective generated file or files. The paragraphs below
provide helpful guidelines.

Example Template and Its Generated File
“Section of Template File” on page 2-11 below shows a portion of an example
.c code template file. “Corresponding Section of Generated File” on page 2-12
shows the corresponding portion of the .c file Real-Time Workshop
Embedded Coder generated using this template.

Notice %<FileName> on the template. This illustrates how a symbol name is
placed on a template. The term FileName is a symbol name. Every symbol
name must be enclosed by a percent sign and brackets: %< >. You can add the
desired symbol name (within the %< > delimiter) at a particular location on
the template. This is how you control where an item will be located on the

Defining Templates

2-11

generated source file. For example, notice the filename control_logic.c in
the .c file (Generated File). Notice that this is located in the .c file where
%<FileName> is located on the template (the first figure).

Table A-2, Template Symbols, on page A-13, identifies all provided symbols.
Table A-3, Parent-Child Relationships of Template Symbols, on page A-19,
shows all symbol names according to their symbol group and classifies the
symbol names into their obvious groupings. Table A-4, Rules for Modifying or
Creating a Template, on page A-21, explains the rules you must follow when
placing symbols on a template.

Section of Template File
The listing below is part of an example .c code template file. Compare this
with control_logic.c in “Corresponding Section of Generated File” on
page 2-12.

/**
** FILE INFORMATION:
** Filename: %<FileName>
** File Creation Date: %<Date>
**
** ABSTRACT
** %<Abstract>v
**
** NOTES:
** %<Notes>
**
** MODEL INFORMATION:
** Model Name: %<ModelName>
** Model Descripiton %<Description>
** Model Version: %<ModelVersion>
** Model Author %<Creator> - %<Created>
**
** MODIFICATION HISTORY:
** Model at Code Generation: %<ModifiedBy> - %<ModifiedDate>
.
.
.

2 Selecting and Defining Templates

2-12

Corresponding Section of Generated File
The listing below is part of a file named control_logic.c. Compare with the
.c code template file shown in “Section of Template File” on page 2-11.

/**
** FILE INFORMATION:
** Filename: control_logic.c
** File Creation Date: 7-Jul-2004
**
** ABSTRACT
** This is the abstract for the model.
**
** NOTES:
** This is a note from Simulink.
**
** MODEL INFORMATION:
** Model Name: control_logic
** Model Descripiton
** Model Version: 1.195
** Model Author Smith - Fri Jul 2 13:29:52 2004
**
** MODIFICATION HISTORY:
** Model at Code Generation: Jones - Wed Jul 07 11:12:42 2004
.
.
.
.

3

Managing Data Dictionary

Introduction (p. 3-2) Describes the data dictionary created for Simulink and
Stateflow models (the “code generation data dictionary”).

Registering User Data Types (p. 3-4) Explains how to register user-defined data types so they
can be associated with the corresponding MathWorks data
types.

Registering User Object Types (p. 3-10) Explains how to register one or more sets of user-defined
properties and property values that can be applied
automatically to user data objects as desired.

Adding Simulink Data Objects to the
Dictionary (p. 3-11)

Explains how to add data objects to the code generation
data dictionary.

Applying Naming Rules to Identifiers
Globally (p. 3-19)

Explains how to change the spelling of all identifier names
according to the same rule, when code generation occurs.

Inspecting Code and Editing the
Dictionary (p. 3-27)

Explains how to generate and inspect the source code and,
if necessary, change property values of data objects in the
dictionary.

3 Managing Data Dictionary

3-2

Introduction
A data dictionary contains all of the parameters and signals that the source
code uses, and a description of their properties. The data dictionary that the
code generator creates for Simulink and Stateflow models is called the code
generation data dictionary. It is the total number of data objects that appear
in the middle pane of the Model Explorer dialog box. These data objects also
appear in the MATLAB workspace. This procedure allows you to create or
edit the dictionary. The procedure allows you to control property values for
each data object. This, in turn, determines how each parameter and signal is
defined and declared in the automatically generated code.

Property value settings also can affect where the code generator places a
parameter or signal in the generated file. This is because property values are
associated with different template symbols. The location of a symbol on a
template determines where the associated parameter or signal is located in
the generated file. For details about templates and symbols, see Chapter 2,
“Selecting and Defining Templates.”

It is helpful to define terms you will see when managing the dictionary,
especially when you view the Model Explorer dialog box. In Simulink, there
is a hierarchy of terms that are drawn from object-oriented programming. For
details, see “Working with Data Objects” in the Using Simulink
documentation. The sketch below summarizes this hierarchy.

Package

 .

P = Property

PV = Property Value

. . Class

P . . . P

PV

Class

P . . . P

PV PV PV

Introduction

3-3

In our context, mpt is the package. There are only two classes in this package:
Parameter and Signal. Each class has a number of properties associated with
it (parameter properties in the parameter class and signal properties in the
signal class). Sometimes properties are called attributes. Simulink data
objects (the parameters and signals) are the instances of a "package.class"
that make up the data dictionary. All parameter data objects share a single
set of properties. All signal data objects share a different single set of
properties. (In our case, the two sets are almost the same.) For each data
object, each property in the set has its own property value that must be
specified in the dictionary.

Note In this document, “signal” refers to a Simulink signal or Stateflow
data.

There are five main subprocedures in the Managing Data Dictionary process.
Do these in the order listed below:

• “Registering User Data Types” on page 3-4

• “Registering User Object Types” on page 3-10

• “Adding Simulink Data Objects to the Dictionary” on page 3-11

• “Applying Naming Rules to Identifiers Globally” on page 3-19

• “Inspecting Code and Editing the Dictionary” on page 3-27

3 Managing Data Dictionary

3-4

Registering User Data Types
You must either accept the MathWorks default data types or register
user-defined data types. If you have user-defined data types, you must
register these so that the code generator can associate them with the
corresponding MathWorks data types. Then, the code generator will use your
user data types in the generated source code instead of the MathWorks data
types.

This procedure registers user data types by placing function calls in the
custom_user_type_registration.m file, whose arguments specify
information about the user data type and its associated MathWorks data
type:

1 Look at the MathWorks data types listed in Table 3-1, Equivalent Data
Types (User To Fill In), on page 3-7. If you want to use only these, then you
do not need to register your own data types. In this case, proceed to
“Registering User Object Types” on page 3-10. Otherwise, go to the next
step. (For explanations of primary and secondary user data types, see
Table 3-2, Arguments To Place in utype_register Function Call, on
page 3-8.)

2 On the MATLAB command line, type
edit custom_user_type_registration. The preexisting file named
custom_user_type_registration.m opens in the MATLAB editor. The
code generator executes this file’s code to register user-defined data types,
only if these have been added to the file. Initially, this file contains no
user-defined data type information.

Registering User Data Types

3-5

3 Place the pointer on a new line after the line that reads utype_establish;.
As instructed below, you must register every user data type to be added to
the dictionary by a call to the M-function utype_register. The arguments
in this function call must be provided in the prescribed left-to-right order
and syntax. See the figure below for an example and Table 3-2, Arguments
To Place in utype_register Function Call, on page 3-8 for an explanation of
each argument. Further, as instructed in the next step, you must know the
names of all of the user data types to be entered in the dictionary, and The
MathWorks data types to which each is equivalent. See Table 3-1,
Equivalent Data Types (User To Fill In), on page 3-7.

4 Make a copy of Table 3-1, Equivalent Data Types (User To Fill In), on
page 3-7 and, in the user-defined data types columns, list all of your data
types. You can associate as many user-defined data types with a single
MathWorks data type as you want. Be sure to place each in its proper row,
beside the equivalent MathWorks data type.

utype_establish;

utype_register('real32_T', 'userfloat', 'primary', '<userdata_types.h>');

Example of call to the function that registers a user data type. See Table 3-2,
Arguments To Place in utype_register Function Call, on page 3-8.

Function name

MathWorks data type*

User data type*

primary: User data type is primary

secondary: User data type is secondary

#include .h File

Use the ANSI C angle-
bracket or double-quote
delimiter.

* Equivalent data types

3 Managing Data Dictionary

3-6

Note Real-Time Workshop automatically associates the MathWorks data
types with the equivalent ANSI C data types.

5 Type a utype_register function call for every user data type that you
listed in the table mentioned in the previous step.

6 Ensure that the .h file that contains the typedef statements for each user
data type is in the appropriate directory. (That is, appropriate to the
chosen delimiter: angle-brackets or double-quotation marks.)

Caution During code generation, a consistency checker looks for the
required filename custom_user_type_registration.m. So do not change the
name of this file when doing the next step.

7 Save the custom_user_type_registration.m file in a user-specified
folder that is on the MATLAB path. This path must be above
toolbox\rtw\targets\mpt\user_specific in the MATLAB search path.
The user data types are registered. Now these user data types are
available for you to select in the Data type field of the Model Explorer
dialog box for a signal. For details on how to apply user data types in the
generated code, see “Applying User Data Types to Signal Objects in the
Generated Code” on page 3-24.

Registering User Data Types

3-7

Table 3-1: Equivalent Data Types (User To Fill In)

MathWorks Data Type Primary User-Defined
Data Type

Secondary User-Defined
Data Types

boolean_T

int8_T

int16_T

int32_T

real32_T

real_T

uint8_T

uint16_T

uint32_T

3 Managing Data Dictionary

3-8

Table 3-2: Arguments To Place in utype_register Function Call

Argument (Left to Right) To
Place in utype_register
Function Calls

Description

MathWorks Data Type The MathWorks data type, listed in Table 3-1, Equivalent
Data Types (User To Fill In), on page 3-7, that is equivalent to
the specified user data type.

User Data Type The user-defined data type that is equivalent to a specified
MathWorks data type specified in the function call. The name
must conform to ANSI C rules. The name may contain any
combination of uppercase or lowercase characters, decimal
digits 0 to 9, or the underscore character. The identifier must
start with a letter or underscore character. You cannot use an
ANSI C reserved word. For readability, we recommend that
the chosen characters of the identifier suggest what it is.

Registering User Data Types

3-9

primary or secondary Specifies whether the user data type indicated in the function
call is primary or secondary. There can be one primary user
data type for the equivalent MathWorks data type, and as
many secondary user data types as you want.

If primary, during code generation Real-Time Workshop
Embedded Coder will use this data type instead of the
MathWorks data type

• For data type conversion (that is, for a cast operation
specified in the code)

• For data definition and declaration

A secondary is another user data type that maps to the same
MathWorks data type as the primary does. It allows you to
have multiple aliases for the same MathWorks data type. A
user data type specified as secondary is used in definition and
declaration statements but not in a cast operation.

If there is only one user data type for a MathWorks data type,
you must specify primary and include one utype_register
function call. If a user data type also has one or more
secondary names, you must specify each as secondary in as
many separate utype_register function calls.

The terms primary and secondary are case insensitive.

#include .h File Specifies the user’s prewritten .h file that includes the
typedef statement for the indicated user data type. Place
between the ANSI C angle-brackets or double-quotes
delimiter. The directory that each delimiter indicates varies
by compiler and is explained in the compiler documentation.
Usually, however (but not always), the angle brackets indicate
that the compiler will find the .h file in the default directory
where the standard C library is located (the “source” folder).

Table 3-2: Arguments To Place in utype_register Function Call (Continued)

Argument (Left to Right) To
Place in utype_register
Function Calls

Description

3 Managing Data Dictionary

3-10

Registering User Object Types
This procedure registers one or more fixed sets of user-defined property
values that can be applied to user data objects. Each set, called a “user object
type,” is given a unique name. Use this feature when you want to apply the
same set of properties and their values to multiple data objects. You can apply
the predefined set automatically to selected data objects, rather than having
to follow “Setting Property Values” on page 3-15 for each of these data objects.

You register the set of property values by placing function calls in a file
named custom_user_object_type_info.m. You can register as many object
types in the file as you want. Their unique names will be selectable in the
User object type field on the Model Explorer dialog box. The property
values you specify in the file for a particular user object type name appear
automatically in the corresponding fields on the Model Explorer dialog box
when you select that name:

1 Using a text editor, create a file named
custom_user_object_type_info.m.

2 In the file, register a unique data object name and the desired set of
properties and property values you want associated with this name. (An
example custom_user_object_type_info.m file, which contains
instructions, is in the matlab/toolbox/rtw/targets/mpt/mptdemos
directory.)

3 Save the file on the MATLAB path.

4 Repeat steps 1 through 3 for any remaining user object types you want to
register.

Proceed to “Adding Simulink Data Objects to the Dictionary” on page 3-11.

Adding Simulink Data Objects to the Dictionary

3-11

Adding Simulink Data Objects to the Dictionary
Now you can add data objects to the code generation data dictionary. “Data
objects” refers to the model’s parameters and signals. All of the model’s data
objects must be in the dictionary. (If you have no user-defined data objects to
import into the dictionary, start with “Adding Simulink Data Objects with
Data Object Wizard” on page 3-13.)

Importing External Data Objects
This procedure imports into the code generation data dictionary any
user-defined data objects (and their property values) that are in

• A .mat file from a previous Simulink session

• An external data dictionary (such as an Excel file)

Follow either of these two procedures below, as applicable.

Loading Data Objects from .mat File
On the MATLAB command line, type load filename, where filename is the
name of the .mat file. This file must be on the MATLAB path or in the current
directory. The data objects from the file are loaded into the MATLAB
workspace. (The data objects in the workspace constitute the code generation
data dictionary.)

Proceed to “Adding Simulink Data Objects with Data Object Wizard” on
page 3-13.

Creating Data Objects Based on External Data Dictionary

1 Open the external file that contains the data objects (such as a spreadsheet
or database file).

2 Determine all of the data objects in this file that correspond to the
parameters and signals in the model. (See “Introduction” on page 3-2 for
an explanation of a model’s parameters and signals.) In the code
generation data dictionary, parameters in the external file belong to the
Simulink parameter class and signals belong to the Simulink signal class.

3 Managing Data Dictionary

3-12

Note The steps below use a dialog box to create data objects. Instead, you
can type name = mpt.Signal or name = mpt.Parameter on the MATLAB
command line. The name is the name of each data object in your file that is in
the mpt.Signal and mpt.Parameter class, respectively.

3 On the MATLAB command line, type daexplr and press Enter. The Model
Explorer dialog box appears.

4 On the Model Hierarchy (left) pane, expand Simulink Root, and select
Base Workspace.

5 On the Add menu, select Custom. The Select Object dialog box appears,
like that shown below.

6 In the Object class field, click the down arrow and select mpt.Parameter.

7 In the Object name(s) field, type the names of all of the data objects in
your file that are in the mpt.Parameter class, separating them by commas.

8 Click OK. The data objects for the parameter class appear in the middle
pane of the Model Explorer dialog box, and therefore have been created in
the code generation data dictionary.

9 Repeat steps 6 through 8 for all of the data objects in your file that are in
the mpt.Signal class.

Note The property values for these data objects are supplied by default.

Adding Simulink Data Objects to the Dictionary

3-13

Now you need to add missing Simulink data objects.

Adding Simulink Data Objects with Data Object
Wizard
This procedure places all missing data objects (that you select) in the code
generation data dictionary. If you imported data objects from an external
dictionary, this procedure adds the remaining data objects required for code
generation. If you did not import data objects from an external dictionary,
this procedure adds all of the selected data objects. Most of the property
values of data objects are supplied by defaults. A few are from the model:

1 If the model whose data objects you want to add to the data dictionary is
not open, follow “Opening Model with Desired Settings” on page 1-4.

2 On the MATLAB command line, type dataobjectwizard. The Data Object
Wizard dialog box appears, as shown below.

3 Managing Data Dictionary

3-14

3 In the Model name field, type the name of the model you opened in step 1
and press the Enter button, or navigate to it using the Browse button. The
Analyze button becomes available.

4 Click the Analyze button. After a moment, a list of all of the model’s data
objects appear that are not yet in the code generation data dictionary. This
includes all of the model’s signals, parameters, data stores, and discrete
states. Each data store and discrete state is listed as a signal class. (The
following Simulink blocks are supported: Discrete Filter, Discrete
State-Space, Discrete-Time Integrator, Discrete Transfer Fcn, Discrete
Zero-Pole, Memory, and Unit Delay.)

Adding Simulink Data Objects to the Dictionary

3-15

5 If you want to associate one or more data objects with the mpt package,
select each of those data objects. (Clicking Check All selects all data
objects.) Otherwise, go to step 8.

6 In the Choose package for selected objects field, select mpt.

7 Click Apply Package. All selected data objects are associated with the mpt
package, as indicated in the Package column.

8 If you want to associate one or more data objects with the Simulink
package, repeat steps 5 through 7, except select Simulink in the Choose
package for selected objects field.

Note After doing the next step, a Data Object Wizard message could
appear for a parameter data object. If you click the Do not ask again button
on that message, it will not appear again during the current MATLAB
session.

9 Click Create. The selected data objects are added to the MATLAB
workspace, and they disappear from the Data Object Wizard.

10 Repeat steps 3 through 9 for any other model or models.

11 Click Cancel. The Data Object Wizard disappears. Now you must set
property values for the data objects.

Setting Property Values
All of the model’s selected data objects are in the dictionary. Default property
values are supplied automatically. You can either accept the default value or
change a property value for each property of each data object.

Note The Alias property is related to “Applying Naming Rules to
Identifiers Globally” on page 3-19. As explained in that procedure, for an
mpt data object (identifier), selecting the Alias overrides naming rule
check box causes the name you specify in the Alias field to override the
naming rule selection you make on the Configuration Parameters dialog

3 Managing Data Dictionary

3-16

box. But for a Simulink data object, selecting other than None in a naming
rule field overrides Alias on the Model Explorer regardless of whether or
not you specify an Alias name. (The Alias overrides naming rule check box
is not available for a Simulink data object.)

1 If the Model Explorer dialog box is not open, open it by typing daexplr on
the MATLAB command line and pressing Enter.

Note At the top of the Model Explorer dialog box, ensure that the Search
button is available. If it is not, click the Done button in the middle pane to
make the Search button available. Otherwise, the data objects required in
the following steps may not appear in the middle pane.

In the Model Hierarchy (left) pane, select MATLAB Workspace. All data
objects in the code generation data dictionary appear in the Contents of
(middle) pane.

2 Click a data object in the middle pane. The properties for this data object
appear in the right pane. The name of this pane is either mpt.Parameter
or mpt.Signal, depending on the data object you selected. The figure below
shows properties for mpt.Parameters. The properties for mpt.Signals are
almost the same. Table A-5, Parameter and Signal Property Values, on
page A-24 defines properties for both selections.

Adding Simulink Data Objects to the Dictionary

3-17

3 For each property (dialog box element) in the mpt.Parameter or
mpt.Signal pane, either accept the default or specify the desired property
value. Consult as reference, Table A-5, Parameter and Signal Property
Values, on page A-24.

Note Some selections in the Storage class field have additional fields
associated with them on the Model Explorer dialog box. To ensure that you
see the exact fields that are associated with the chosen selection, make the
selection in this field and then click the Apply button.

4 Click the Apply button.

5 Repeat steps 3 and 4 for the model’s remaining data objects.

3 Managing Data Dictionary

3-18

Applying Naming Rules to Identifiers Globally

3-19

Applying Naming Rules to Identifiers Globally
Signal names and parameter names appear on the model. The same names
appear as data objects on the Model Explorer dialog box. These names can
be spelled exactly the same way when they appear as identifiers in the
generated source code. For example, "Speed" on the model (and workspace)
can be spelled "Speed" as an identifier in the code. But you can change how
they appear in the code. For example, if desired, you can change "Speed" to
SPEED, speed or Speed. Or, you can choose to use a different name altogether
in the generated code, like MPH. The only restriction is that you follow ANSI
C rules for naming identifiers.

There are two ways of changing how a signal name or parameter name is
represented in the generated code. You can do this globally, by following this
procedure. This procedure makes selections on the Configuration
Parameters dialog box to change the spelling of all of the names when code
generation occurs, according to the same rule. Or, you can change the spelling
of names individually by following “Setting Property Values” on page 3-15.
(The relevant property in that procedure is Alias on the Model Explorer.)

The naming rules versus Alias override works differently, depending on
whether the data object is an mpt data object or a Simulink data object. For
an mpt data object, clearing the Alias overrides naming rule check box on
the Model Explorer causes the naming rule selection to be in effect, whether
or not you have specified a name in the Alias field. But specifying an Alias
name and selecting this check box causes the name to be in effect for that data
object.

For a Simulink data object, selecting a naming rule (that is, selecting other
than None in any of the naming rule fields), causes the naming rule to be in
effect for that data object. This is true whether or not you have specified a
name in the Alias field for that data object. (The Alias overrides naming
rule check box is not available for a Simulink data object.)

Open the model and click Configuration Parameters on the Simulation
menu. Click Symbols under Real-Time Workshop on the left pane. The
Simulink data object naming rules pane appears, as shown in the next
figure. Notice the preconfigured settings on this pane. If all of these are
acceptable as is, proceed to “Inspecting Code and Editing the Dictionary” on
page 3-27. Otherwise, follow the procedures below, as desired, to change
parameter names, signal names, or parameter names you want to use in a

3 Managing Data Dictionary

3-20

#define preprocessor directive. Table A-1, MPF Elements on Configuration
Parameters Panes, on page A-2 describes all fields on this pane and their
possible settings for these procedures.

• “Defining Rules That Change All #defines” on page 3-20

• “Defining Rules That Change All Parameter Names” on page 3-21

• “Defining Rules That Change All Signal Names” on page 3-22

Defining Rules That Change All #defines
This procedure allows you to change all of the model’s parameter names
whose storage class you selected as Define in “Setting Property Values” on
page 3-15, using the same rule. The new names will appear as identifiers in
the generated code:

Applying Naming Rules to Identifiers Globally

3-21

1 In the #define naming field, click the desired selection. (Table A-1, MPF
Elements on Configuration Parameters Panes, on page A-2, explains the
possible selections, under the Symbols pane.) The default is None. If you
select Custom M-function, go to the next step. Otherwise, click Apply and
proceed to “Defining Rules That Change All Parameter Names” on
page 3-21.

2 Write a function in M-code that changes all occurrences of the parameter
name whose storage class you specified as Define in “Setting Property
Values” on page 3-15 so that it appears the way you want as an identifier
in the generated code. (An example is shown below.)

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under #define naming, type the name of the file
you saved in the previous step.

5 Click Apply and then define rules that change all parameter names.

Defining Rules That Change All Parameter Names
This procedure allows you to change all of the model’s parameter names,
using the same rule. The new names will appear as identifiers in the
generated code:

1 In the Parameter naming field, click the desired selection. (Table A-1,
MPF Elements on Configuration Parameters Panes, on page A-2, explains
the possible selections, under the Symbols pane.) The default is None. If
you selected Custom M-function, go to the next step. Otherwise, click
Apply, and proceed to “Defining Rules That Change All Signal Names” on
page 3-22.

2 Write a function in M-code that changes all occurrences of parameter
names in the model to appear the way you want as identifiers in the
generated code. For example, the code below changes all parameter names
as necessary to make their first letter uppercase, and their remaining
letters lowercase.

3 Managing Data Dictionary

3-22

function revisedName = initial_caps_only(name, object)
% INITIAL_CAPS_ONLY: User-defined naming rule causing each
% identifier in the generated code to have initial cap(s).
%
% name: name as spelled in model.
% object: the object of name; includes name's properties.
%
% revisedName: manipulated name returned to MPT for the code.
:
%
%
revisedName = [upper(name(1)),lower(name(2:end))];
:

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under Parameter naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that apply to all signal names.

Defining Rules That Change All Signal Names
This procedure allows you to change all of the model’s signal names, using the
same rule. The new names will appear as identifiers in the generated code:

1 On the Signal naming field, click the desired selection. (Table A-1, MPF
Elements on Configuration Parameters Panes, on page A-2, explains the
possible selections, under Symbols pane.) The default is None. If you
selected Custom M-function, go to the next step. Otherwise, click Apply
and then inspect proceed to “Inspecting Code and Editing the Dictionary”
on page 3-27.

2 Write a function in M-code that changes all occurrences of signal names in
the model to appear the way you want as identifiers in the generated code.
(An example is shown in “Defining Rules That Change All Parameter
Names” on page 3-21.)

3 Save the function as a .m file in any folder that is in the MATLAB path.

Applying Naming Rules to Identifiers Globally

3-23

4 In the M-function field under Signal naming, type the name of the file you
saved in the previous step.

5 Click Apply and proceed to “Inspecting Code and Editing the Dictionary”
on page 3-27.

3 Managing Data Dictionary

3-24

Applying User Data Types to Signal Objects
in the Generated Code

If you have registered user data types, as explained in “Registering User Data
Types” on page 3-4, follow this procedure to ensure that they appear in the
generated code. See the figures below:

Note Step 1 creates all the Simulink.AliasType objects, that correspond to
all registered data types, using a MATLAB command. As an alternative, you
can create a Simulink.AliasType object one at a time using the Simulink
Alias Type selection on the Add menu of the Model Explorer dialog box. Or,
you can create a Simulink.AliasType object one at a time by typing
userdatatype = Simulink.AliasType on the MATLAB command line,
where userdatatype is a registered user data type. See “Simulink. Alias
Type” in the Simulink documentation.

1 Create all Simulink.AliasType objects by typing the MATLAB command,
ec_create_type_obj. These Simulink.AliasType objects, which
correspond to all registered user data types, appear in the MATLAB base
workspace.

2 In your model, for a signal associated with a signal object, select the user
data type in the Data type field on the Model Explorer dialog box.

3 Open the Block Parameters dialog box of the signal’s source block.

4 Select the Signal data types tab.

5 In the Output data type field, type object.DataType, where object is the
name of the signal object, and then click Apply.

6 Repeat steps 2 through 5 for each remaining signal associated with a
signal object.

7 Save the model and save all of the data objects in the MATLAB base
workspace in a .mat file.

Applying User Data Types to Signal Objects in the Generated Code

3-25

3 Managing Data Dictionary

3-26

Inspecting Code and Editing the Dictionary

3-27

Inspecting Code and Editing the Dictionary
All data objects for the model are in the code generation data dictionary. You
have specified property values for each data object’s properties. Now you
generate and inspect the source code, to see if it needs correction or
modification. If it does, you can change property values and regenerate the
code until it is what you want:

1 In the Configuration Parameters dialog box, click Real-Time Workshop
on the left pane.

2 In the Documentation pane, select the Generate HTML report check
box.

Note When you select the Generate HTML report check box, Real-Time
Workshop Embedded Coder automatically selects the two check boxes under
it: Include hyperlinks to model and Launch report after code generation
completes. For large models, you may find that HTML report generation
takes longer than you want, after performing step 4 below. In this case,
especially for large models, consider clearing the Include hyperlinks to
model check box. The report will be generated faster.

3 On the Configuration Parameters dialog box, select the Generate code
only check box. The Build button changes to Generate code.

Note The generate code process generates the .c and .h files. The build
process adds compiling and linking to generate the executable. For details on
build, see “Steps in the Build Process” in the Real-Time Workshop
documentation.

4 Click the Generate code button. After a moment, the HTML report
appears, listing the generated files on the left pane (under Generated
Source Files).

5 Click a .c file. The .c file opens in an editor.

3 Managing Data Dictionary

3-28

6 Inspect the file to ensure that it is correct and is organized the way you
want.

Note We advise that you practice making changes to property values,
regenerate the code, and then notice how a .c file changed.

7 If desired, repeat steps 1 to 6 until the file contains the lines of code and
their locations in the file that you want.

8 Repeat steps 1 through 7 for all remaining generated .c files and .h files
listed in the HTML report.

4

Customizing with
Additional Options

Ensuring Delimiter Is Specified for All
#Includes (p. 4-2)

Explains how to instruct the code generator to use the
angle-bracket delimiter for all data objects whose
IncludeFile property has no delimiter specified.

Selecting Source That Initializes
Signals (p. 4-3)

Allows you to select the source that initializes each of the
model’s signals in the generated code.

Adding Custom Comments (p. 4-4) Explains how to add the selected data object’s property
values as a comment in the generated code above that
data object’s identifier.

“Adding Global Comments” on page 4-6 Explains how to add a comment to the model using the
Simulink DocBlock so that this comment appears in the
generated file where desired.

4 Customizing with Additional Options

4-2

Ensuring Delimiter Is Specified for All #Includes
Understanding the purpose of this procedure requires understanding the
IncludeFile property of a data object, described in Table A-5, Parameter and
Signal Property Values, on page A-24, and performed in “Setting Property
Values” on page 3-15. For a particular data object, you can specify as the
IncludeFile property value a .h filename where that data object will be
declared. Then, in the IncludeFile section of the generated file, this .h file
is indicated in a #include preprocessor directive.

Further, when specifying the filename as the IncludeFile property value,
you may or may not place it within the double-quote or angle-bracket
delimiter. That is, you can specify it as filename, "filename", or
<filename>. The code generator finds every data object for which you
specified a filename as its IncludeFile property value without a delimiter.
By default, it assigns to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these
instead of the default double-quote delimiter.

In the #include file delimiter field, select the #include <header.h> instead
of the default Use #include "header.h".

Selecting Source That Initializes Signals

4-3

Selecting Source That Initializes Signals
This procedure allows you to select the source that initializes each of the
model’s signals in the generated code. The selection is made in the Source of
initial values field on the Data Placement pane of the Configuration
Parameters dialog box. The code generator will place the appropriate
initialization statement in the declaration section of the generated file. The
identifiers that correspond to the model’s signals then will be initialized to
the desired values during the initialization phase when the program runs.
There are two possible selections: Model and Data object. The default is
Model:

• If you accept Model, the statement the code generator places in the file for
each signal is type identifier = zero;, where identifier corresponds
to the signal in the model, and zero is 0.0 or 0, depending on the type. The
Model selection always initializes the value to zero.

• If you select Data object, the statement the code generator places in the
file is type identifier = value;, where value is the Initial value
property value you entered for each signal data object in the Model
Explorer. (See “Setting Property Values” on page 3-15.)

Note Follow “Managing Data Dictionary” on page 3-1 before proceeding
with the steps below.

1 In the open model, click Configuration Parameters on the Simulation
menu. The Configuration Parameters dialog box appears.

2 Click Data Placement under Real-Time Workshop on the left pane. The
Data Placement pane appears on the right.

3 In the Source of initial values field, select Model or Data object.

4 Click the Apply button.

4 Customizing with Additional Options

4-4

Adding Custom Comments
This procedure allows you to add a comment just above a signal or
parameter’s identifier in the generated code. This is accomplished using

• A function that you write in M-code or TLC-code and save in a .m or .tlc
file

• The Custom comments (MPT object only) check box on the Comments
pane of the Configuration Parameters dialog box

• Selecting the .m or .tlc file in the Custom comments function field on
the Comments pane of the Configuration Parameters dialog box.

You may include at least some or all of the property values for the data object.
Each Simulink data object (signal or parameter) has properties, as described
in Table A-5, Parameter and Signal Property Values, on page A-24. This
example comment contains some of the property values for the data object MAP
as specified on the Model Explorer dialog box:

/* DocUnits: PSI */
/* Owner: */
/* DefinitionFile: specialDef */
real_T MAP = 0.0;

Note You can type text in the Description field on the Model Explorer
dialog box for a signal or parameter data object. If you do, and if you select
the Simulink data object descriptions check box on the Comments pane of
the Configuration Parameters dialog box, this text will appear beside the
signal’s or parameter’s identifier in the generated code as a comment. This is
true whether or not you select the Custom comments (MPT objects only)
check box discussed in this procedure. For example, typing Manifold
Absolute Pressure in the Description field for the data object MAP always
will result in the following in the generated code:
real_T MAP = 0.0; /* Manifold Absolute Pressure */

1 Write a function in M-code or TLC-code that places comments in the
generated files as desired. An example .m file named
custom_comments_example.m is provided in the
matlab/toolbox/rtw/targets/mpt/mptdemos directory. An example .tlc

Adding Custom Comments

4-5

file named custom_comments_example.tlc is provided in this directory.
Each of these files contains instructions.

Note The M-code function must have three arguments that correspond to
objectName, modelName, and request, respectively. The TLC-code must have
three arguments that correspond to objectRecord, modelName, and request,
respectively. Note also, in the case of the TLC file, you can use the library
function LibGetSLDataObjectInfo to get every property value of the data
object. See the instructions in the example .m or example .tlc file for
details.

2 Save the function as a .m file or a .tlc file with the desired filename and
place it in any folder in the MATLAB path.

3 In the open model, select Configuration Parameters on the Simulation
menu. The Configuration Parameters dialog box appears.

4 Click Comments under Real-Time Workshop on the left pane. The
Comments pane appears on the right.

5 Select the Custom comments (MPT objects only) check box.

6 In the Custom comments function field, either type the filename of the
.m file or .tlc file you created, or select this filename using the Browse
button.

7 Click the Apply button.

8 Click Generate Code.

9 Open the generated files and inspect their content to ensure the comments
are what you want.

4 Customizing with Additional Options

4-6

Adding Global Comments
This procedure allows you to add a comment to the model using the Simulink
DocBlock so that this comment appears in the generated file where desired.

1 Drag the DocBlock from Model-Wide Utilitites in the Simulink library
onto the model. See “DocBlock” in the Simulink documentation for details.

2 After double clicking the DocBlock and typing the desired comment in the
editor, save and close the editor.

3 Right click the DocBlock and select Mask Parameters. The Block
Parameters dialog box appears.

4 Type the desired Documentation child template symbol into the RTW
Embedded Coder Flag field, as shown below, and then click OK. Note
that symbol names are case sensitive. This is the symbol with which the
comment will be placed in the generated file. To see a list of the supplied
Documentation child template symbols, see Table A-3, Parent-Child
Relationships of Template Symbols, on page A-19.

5 Right click the DocBlock and select Block Properties.

6 In the Block Properties dialog box, select %<ECoderFlag> as shown in the
figure below, and then click OK. The symbol name typed in the previous
step now appears under the DocBlock on the model.

7 Save the model. After you generate code, the comment appears in the
generated file in association with the symbol name.

Adding Global Comments

4-7

4 Customizing with Additional Options

4-8

5

Managing File Placement
of Data Definitions and
Declarations

Introduction (p. 5-2) Identifies MPF selections that are interdependent, and
explains how these manage file placement of data
definitions and declarations.

Priority and Usage (p. 5-3) Identifies the priorities that exist among the
interdependent MPF selections, and their frequency of
use.

Example Settings (p. 5-10) Provides example settings of the interdependent
selections, and explanations of their results.

5 Managing File Placement of Data Definitions and Declarations

5-2

Introduction
This chapter focuses on interdependent selections. Their combined settings,
along with the Simulink partitioning, determine what is termed “data
placement.” This term refers to

• The number of files generated.

• Whether or not the generated files contain definitions for a model’s global
identifiers. And, if a definition exists, the settings determine the files in
which MPF places them.

• Where MPF places global data declarations (extern).

The following six MPF selections are distributed among the main procedures
and form an important interdependency:

• The Data definition field on the Data Placement pane of the
Configuration Parameters dialog box.

• The Data declaration on the Data Placement pane of the Configuration
Parameters dialog box.

• The Owner field on the Model Explorer dialog box, and the Module naming
and Module name fields on the Data Placement pane of the Configuration
Parameters dialog box. For discussion purposes, we use the term
“Ownership” to refer to these three (Owner, Module naming, and Module
name)

• The Definition file field on the Model Explorer dialog box.

• The Header file field on the Model Explorer dialog box.

• The Memory section field on the Model Explorer dialog box.

Priority and Usage

5-3

Priority and Usage
There is a priority among the interdependent selections. From highest to
lowest priority, these are called

• Definition File priority

• Header File priority

• Ownership priority

• Global priority

• Read-Write priority or Global priority

But as to usage, the order is reversed. This distinction is illustrated below.

Definition File

Header File

Ownership

Highest priority

Lowest priority

Least used

Most used

Override Global or Read-Write
for selected data object.

Read-Write Global

5 Managing File Placement of Data Definitions and Declarations

5-4

Unless they are overridden, the Read-Write and Global priorities place in the
generated files all of the model’s MPF-derived data objects that you selected
using the Data Object Wizard. (See “Adding Simulink Data Objects with Data
Object Wizard” on page 3-13 for details.) Before generating the files, you can
use the higher priority Definition file, Header file, and Ownership, as desired,
to override Read-Write or Global priorities for single data objects. Most users
will employ Read-Write or Global, without an override. A few users, however,
will want to do an override for certain data objects. We expect that those users
whose applications include multiple modules will want to use the Ownership
priority.

Note The priorities are in effect only for those data objects that are derived
from Simulink.Signal and Simulink.Parameter, and whose custom storage
classes are specified using the Custom Storage Class Designer. (For details,
see “Designing Custom Storage Classes” in the Real-Time Workshop
Embedded Coder documentation.) Otherwise, Real-Time Workshop
determines the data placement.

It will prove helpful to explain the lowest and most commonly used priorities
first.

Read-Write Priority
This is the lowest priority. Consider that a model consists of one or more
Simulink blocks or Stateflow diagrams. There can be subsystems within these.
For the purpose of illustration, think of a model with one top-level block called
fuelsys. You double-clicked the block and now see three subsystems labeled
subsys1, subsys2 and subsys3, as shown in the next figure. Signals a and b
are outputs from the top-level block (fuelsys). Signal a is an input to subsys1
and b is input to subsys2. Signal c is an output from subsys1. Notice the other
inputs and outputs (d and e). Signals a through e have corresponding data
objects and are part of the code generation data dictionary.

As explained in Chapter 3, “Managing Data Dictionary,” MPF provides you
with the means of selecting a data object that you want defined as an identifier
in the generated code. MPF also allows you to specify property values for each
data object. For this illustration, we choose to include all of the data objects to
be in the dictionary.

Priority and Usage

5-5

The Generated Files
We generate code for this model. As shown in the figure below, this results in
a .c source file corresponding to each of the subsystems. (In actual
applications, there could be more than one .c source file for a subsystem. This
is based on the file partitioning previously selected in Simulink for the model.
But for our illustration, we only need to show one for each subsystem.) Data
objects a through e have corresponding identifiers in the generated files.

A .c source file has one or more functions in it, depending on the internal
operations (functions) of its corresponding subsystem. An identifier in a
generated .c file has local scope when it is used only in one function of that .c
file. An identifier has file scope when more than one function in the same .c file
uses it. An identifier has global scope when more than one of the generated files
uses it.

A subsystem’s source file always contains the definitions for all of that
subsystem’s data objects that have local scope or file scope. (These definitions
are not shown in the figure.) But where are the definitions and declarations for
data objects of global scope? These are shown in the figure.

subsys3

subsys1

subsys2

a

b

e

c

d

fuelsys

a b

Model

5 Managing File Placement of Data Definitions and Declarations

5-6

When the Read-Write priority is in effect, this source file contains the
definitions for the subsystem’s global data objects, if this is the file that first
writes to the data object’s address. Other files that read (use) that data object
only include a reference to it. This is why this priority is called Read-Write.
Since a read and a write of a file are analogous to input and output of a model’s
block, respectively, there is another way of saying this. The definitions of a
block’s global data objects are located in the corresponding generated file, if
that data object is an output from that block. The declarations (extern) of a
block’s global data objects are located in the corresponding generated file, if
that data object is an input to that block.

subsys3

subsys1

subsys2

a

b

e

c

d

fuelsys

a b

Model

Results of Read-Write Priority

subsys1.c

int c;

extern int a;

subsys3.c

int e;

extern int c;

extern int d;

Generated Files

subsys2.c

int d;

extern int b;

fuelsys.c

int a;

int b;

Priority and Usage

5-7

Settings for Read-Write Priority
The generated files and what they include, as just described, occur when the
Read-Write priority is in effect. For this to be the case, the other priorities are
“turned off.” That is

• The Data definition field on the Data Placement pane is set to Data
defined in source file.

• The Data declaration field on the Data Placement pane is set to Data
declared in source file.

• The Owner field on the Model Explorer dialog box is blank, and the Module
naming field on the Data Placement pane is set to Not specified. (When
Not specified is selected, the Module name field does not appear.)

• Definition file and Header file on the Model Explorer dialog box are blank.

Global Priority
This has the same priority as Read-Write (the lowest) priority. The settings for
this are the same as for Read-Write Priority, except

• The Data definition field on the Data Placement pane is set to Data
defined in single separate source file.

• The Data declaration field on the Data Placement pane is set to Data
declared in single separate header file.

The generated files that result are shown in the next figure. A subsystem’s data
objects of local or file scope are defined in the .c source file where the
subsystem’s functions are located (not shown). The data objects of global scope
are defined in another .c file (called global.c in the figure). The declarations
for the subsystem’s data objects of global scope are placed in a .h file (called
global.h).

For example, all data objects of local and file scope for subsys1 are defined in
subsys1.c. Signal c in the model is an output of subsys1 and an input to
subsys2. So c is used by more than one subsystem and thus is a global data
object. Since global priority is in effect, the definition for c (int c;) is in
global.c. The declaration for c (extern int c;) is in global.h. Since subsys2
uses (reads) c, #include "global.h" is in subsys2.c.

5 Managing File Placement of Data Definitions and Declarations

5-8

Remaining Priorities
As mentioned previously, the Read-Write and Global priorities operate on all
MPF-derived data objects that you want defined in the generated code. The
remaining priorities allow you to override the Read-Write or Global priorities
for one or more particular data objects. There is a high-to-low priority among
these remaining priorities: Definition File, Header File, and Ownership, for a
particular data object.

Ownership
As mentioned previously, Ownership refers to what you do or do not specify for
the Module naming and Module names fields on the Data Placement pane of
the Configuration Parameters dialog box, and the Owner field on the Model
Explorer dialog box. These settings have no effect on what files are generated.

subsys3

subsys1

subsys2

a

b

e

c

d

fuelsys

a b

Model

Results of Global Priority

subsys1.c

#include "global.h"

subsys3.c

#include "global.h"

Generated Files

subsys2.c

#include "global.h"

fuelsys.c

#include "global.h"

global.c

int a;

int b;

int c;.

int d;

int e;

global.h

extern int a;

extern int b;

extern int c;

extern int d;

extern int e;

Priority and Usage

5-9

Their effects only have to do with definitions and extern statements. There are
five possible configurations, as indicated in Table A-7, Effects of Ownership
Settings, on page A-37.

The Memory Section Setting
Regarding Memory section, Table A-5, Parameter and Signal Property
Values, on page A-24, explains that you can select Default, MemConst,
MemVolatile or MemConstVolatile as the Memory section selection. So, if you
specify a filename for Definition file, and select either Default, MemConst,
MemVolatile or MemConstVolatile for Memory section, Real-Time Workshop
Embedded Coder generates a .c file and a .h file. The .c file contains the
definition for the data object with the pragma statement or qualifier associated
with the Memory section selection. The .h file contains the declaration for the
data object. Then the .h file, with the preprocessor directive #include, can be
included in any file that needs to reference the data object.

Note You can add more memory sections. See “Designing Custom Storage
Classes” in the Real-Time Workshop Embedded Coder documentation.

5 Managing File Placement of Data Definitions and Declarations

5-10

Example Settings
Table A-8, Example Settings and Resulting Generated Files, on page A-38,
provides example settings for one data object of a model. Eight examples are
listed so that you can see the generated files that result from a wide variety of
settings. Four examples from this table are discussed below in more detail.
These discussions provide adequate information for understanding the effects
of any settings you might choose. For illustration purposes, the four examples
assume that we are dealing with an overall system that controls engine idle
speed.

The next figure shows that the software component of this example system
consists of two modules, IAC (Idle Air Control), and IO (Input-Output). The
code in the IO module controls the system’s IO hardware. Code is generated
only for the IAC module. (Some other means produced the code for the IO
module, such as hand-coding.) So the code in IO is external to MPF, and can
illustrate legacy code. To simplify matters, the IO code contains one .c source
file, called IO.c, and one .h file, called IO.h.

The IAC module consists of two Stateflow charts, spd_filt and iac_ctrl. The
spd_filt chart has two signals (meas_spd) and filt_spd), and one parameter
(a). The iac_ctrl chart also has two signals (filt_spd and iac_cmd) and a
parameter (ref_spd). (The parameters are not visible in the top-level charts.)
One file for each chart is generated. This example system allows us to illustrate
referencing from file to file within the MPF module, and model to external
module. It also illustrates the case where there is no such referencing.

Example Settings

5-11

IO Module

(External to MPF)

IO.c

Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

IAC (Idle Air Control) Module

IO.h

Depends on MPF Settings

Depends on MPF Settings

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data */

extern real_T meas_spd;

extern real_T iac_cmd;

Engine Idle Speed Control System

5 Managing File Placement of Data Definitions and Declarations

5-12

Proceed to the discussion of the desired example settings:

• “Read-Write Example” on page 5-13

• “Ownership Example” on page 5-14

• “Header File Example” on page 5-16

• “Definition File Example” on page 5-18

Example Settings

5-13

Read-Write Example
These settings and the generated files that result are shown as Example
Settings 1 in Table A-8, Example Settings and Resulting Generated Files, on
page A-38. As you can see from the table, this example illustrates the case in
which only one .c source file (for each chart) is generated.

So, for the IAC model, select the following settings. Accept the Data defined
in source file in the Data definition field and the Data declared in source
file in the Data declaration field on the Data Placement pane of the
Configuration Parameters dialog box. Accept the default Not specified
selection in the Module naming field. Accept the default blank settings for the
Owner, Definition file and Header file fields on the Model Explorer dialog
box. For Memory section, accept Default. Now the Read-Write priority is in
effect. Generate code. The next figure shows the results in terms of definition
and declaration statements.

The code generator generated a spd_filt.c for the spd_filt chart and
iac_ctrl.c for the iac_ctrl chart. As you can see, MPF placed all definitions
of data objects for the spd_filt chart in spd_filt.c. It placed all definitions of
data objects for the iac_ctrl chart in iac_ctrl.c.

However, notice real_T filt_spd. This data object is defined in spd_filt.c
and declared in iac_ctrl.c. That is, since the Read-Write priority is in effect,
filt_spd is defined in the file that first writes to its address. And, it is declared
in the file that reads (uses) it. Further, real_T meas_spd is defined in both
spd_filt.c and the external IO.c. And, real_T iac_cmd is defined in both
iac_ctrl.c and IO.c.

5 Managing File Placement of Data Definitions and Declarations

5-14

Ownership Example
See tables Table A-7, Effects of Ownership Settings, on page A-37, and
Table A-8, Example Settings and Resulting Generated Files, on page A-38. In
the “Read-Write Example” on page 5-13, there are several instances where the
same data object is defined in more than one .c source file, and there is no
declaration (extern) statement. This would result in compiler errors during
link time. But in this example, we configure MPF Ownership rules so that

IO Module

(External to MPF)

IO.c

Generated File for Chart spd_filt

Generated Files for Chart iac_ctrl

IAC (Idle Air Control) Module

IO.h

spd_filt.c

/* Definitions */

const real_T a = 0.9;

real_T filt_spd = 0.0;

real_T meas_spd = 0.0;

iac_ctrl.c

/* Definitions */

const real_T ref_spd = 0.0;

real_T iac_cmd = 0.0;

/* Declarations */

extern real_T filt_spd;

/* Definitions */

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data */

extern real_T meas_spd;

extern real_T iac_cmd;

Engine Idle Speed Control System (Read-Write Example)

Example Settings

5-15

adequate linking can take place. Notice the Example Settings 2 row in
Table A-8, Example Settings and Resulting Generated Files, on page A-38.
Except for the Ownership settings, assume these are the settings you made for
the model in the IAC module. Since this example has no Definition file or
Header file specified, now Ownership takes priority. (If there were a
Definition file or Header file specified, MPF would ignore the Ownership
settings.)

On the Data Placement pane of the Configuration Parameters dialog box,
select User specified in the Module naming field, and specify IAC in the
Module name field (case sensitive). Open the Model Explorer dialog box (by
issuing the MATLAB command daexplr) and, for all data objects except
meas_spd and iac_cmd, type IAC in the Owner field (case sensitive). Then, only
for the meas_spd and iac_cmd data objects, type IO as their Owner (case
sensitive). Generate code.

The results are shown in the next figure. Notice the extern real_T meas_spd
statement in spd_filt.c, and extern real_T iac_cmd in iac_ctrl.c. MPF
placed these declaration statements in the correct files where these data
objects are used. This allows the generated source files (spd_filt.c and
iac_ctrl.c) to be compiled and linked with IO.c without errors.

5 Managing File Placement of Data Definitions and Declarations

5-16

Header File Example
These settings and the generated files that result are shown as Example
Settings 3 in Table A-8, Example Settings and Resulting Generated Files, on
page A-38. Since this example has no Definition file specified, it allows us to
describe the effects of the Header file setting. (If there were a Definition file,
MPF would ignore the Header file setting.) The focus of this example is to

IO Module

(External to MPF)

IO.c

Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

IAC (Idle Air Control) Module

IO.h

spd_filt.c

/* Definitions */

const real_T a = 0.9;

real_T filt_spd = 0.0;

/* Declarations */

extern real_T meas_spd;

iac_ctrl.c

/* Definitions */

const real_T ref_spd = 0.0;

/* Declarations */

extern real_T filt_spd;

extern real_T iac_cmd;

/* Definitions */

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data */

extern real_T meas_spd;

extern real_T iac_cmd;

Engine Idle Speed Control System (Ownership Example)

Example Settings

5-17

show how the Header file settings result in the linking of the two chart source
files to the external IO files, shown in the next figure. (Also, Ownership
settings will be used to link the two chart files with each other.)

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined
in IO.c and declared in IO.h. Both of these identifiers are external to the
generated .c files. You open the Model Explorer dialog box and select both the
meas_spd and iac_cmd data objects. For each of these data objects, in the
Header file field, specify IO.h, since this is where these two objects are
declared. This setting ensures that the spd_filt.c source file will compile and
link with the external IO.c file without errors.

Now we configure the Ownership settings. In the Model Explorer dialog box,
select the filt_spd data object and set its Owner field to IAC. Then, on the
Data Placement pane of the Configuration Parameters dialog box, select
User specified in the Module naming field, and specify IAC in the Module
Name field. This ensures that the spd_filt source file will link to the iac_ctrl
source file. Generate code.

See the figure below. Since you specified the IO.h filename for the Header file
field for the meas_spd and iac_ctrl objects, the code generator assumed
correctly that their declarations are in IO.h. So the code generator placed
#include IO.h in each source file: spd_filt.c and iac_ctrl.c. So these two
files will link with the external IO files. Also, due to the Ownership settings
that were specified, the code generator places the real_T filt_spd = 0.0;
definition in spd_filt.c and declares the filt_spd identifier in iac_ctrl.c
with extern real_T iac_cmd;. Consequently, the two source files will link
together.

5 Managing File Placement of Data Definitions and Declarations

5-18

Definition File Example
These settings and the generated files that result are shown as Example
Settings 4 in Table A-8, Example Settings and Resulting Generated Files, on
page A-38. Notice that a definition filename is specified. The settings in the
table only apply to the data object called “a”. You have decided that you do not
want this object defined in spd_filt.c, the generated source file for the

Engine Idle Speed Control System (Header File Example)

IO Module

(External to MPF)

IO.c

Generated File Chart spd_filt

Generated File Chart iac_ctrl

IAC (Idle Air Control) Module

IO.h

spd_filt.c

/* Includes */

#include <IO.h>

/* Definitions */

const real_T a = 0.9;

real_T filt_spd = 0.0;

iac_ctrl.c

/* Includes */

#include <IO.h>

/* Definitions */

const real_T ref_spd = 0.0;

/* Declarations */

extern real_T filt_spd;

/* Definitions */

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data */

extern real_T meas_spd;

extern real_T iac_cmd;

Example Settings

5-19

spd_filt chart. (There are many possible organizational reasons one might
want an object declared in another file. It is not important for this example to
specify the reason.)

Note For this example, assume the settings for all data objects are the same
as those indicated in “Header File Example” on page 5-16, except for the data
object a. The description below identifies only the differences that result from
this.

You open the Model Explorer, and select data object a. In the Definition file
field you specify any desired filename. Choose control_constants.c.
Generate code.

The results are shown in the next figure. The code generator generates the
same files as in the “Header File Example” on page 5-16, and adds two new
files, filter_constants.c and filter_constants.h. Data object a now is
defined in filter_constants.c, rather than in the source file spd_filt.c., as
it is in the example. This data object is declared in filter_constants.h with
an extern statement. MPF accounted for this .h file by placing the #include
filter_constants.h in the spd_filt.c source file spd_filt.c.

5 Managing File Placement of Data Definitions and Declarations

5-20

IO Module

(External to MPF)

IO.c

Generated Files for Chart spd_ctrl

Generated Files for Chart iac_ctrl

IAC (Idle Air Control) Module

IO.h

spd_filt.c

/* Includes */

#include IO.h

#include filter_constants.h

/* Definitions */

real_T filt_spd = 0.0;

iac_ctrl.c

/* Includes */

#include <IO.h>

/* Definitions */

const real_T ref_spd = 0.0;

/* Declarations */

extern real_T filt_spd;

extern real_T iac_cmd;

/* Definitions */

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data */

extern real_T meas_spd;

extern real_T iac_cmd;

filter_constants.c

/* Definitions */

const real_T a = 0.9;

filter_constants.h

/* Declarations */

extern real_T a;

Engine Idle Speed Control System (Definition File Example)

A

Referenced Tables

MPF-Related Panes on Configuration
Dialog Box (p. A-2)

Lists and describes all elements on MPF-related panes on
the Configuration Parameters dialog box.

Template Symbols and Rules (p. A-13) Lists and describes all MPF template symbols and
template symbol rules.

Parameter and Signal Properties
(p. A-23)

Lists and describes all mpt parameter and signal
properties and property values, and illustrates how
changing these affect the generated code.

Interdependent Settings (p. A-37) Shows the effects that example changes to the
interdependent MPF settings have on the generated code.

A Referenced Tables

A-2

MPF-Related Panes on Configuration Dialog Box
The following tables define elements on each MPF-related pane on the
Configuration Parameters dialog box. Elements that are not related to MPF
are not described.

Table A-1: MPF Elements on Configuration Parameters Panes

Pane Element Description

General Ignore
custom
storage
classes

To make module packaging features available, this check box
must be cleared.

Comments

Simulink
data object
descriptions

When this check box is selected, and you type text in the
Description field of the Model Explorer dialog box, that text
will appear beside the signal’s or parameter’s identifier in the
generated code as a comment.

Custom
comments
(MPT objects
only)

When selected, this check box allows you to add a comment
above a signal or parameter’s identifier in the generated code.
You control the content of the comment by writing a function
in M-code (.m file) or TLC-code (.tlc file), and specifying its
filename in the Custom comments function field.

Custom
comments
function

In this field, you specify the .m filename or .tlc filename
that contains the function mentioned just above. This field is
available only when the Custom comments (MPT objects
only) check box is selected.

Symbols #define
naming

This rule applies only to those parameters whose storage
class you selected as Define in “Setting Property Values” on
page 3-15. Allows you to specify one rule by which all of these
parameters change the same way. Then, they appear as
identifiers in the generated code as you want.

MPF-Related Panes on Configuration Dialog Box

A-3

For example, in “Setting Property Values” on page 3-15, a
parameter is named “parama.” For this parameter, you
specified Define (Custom) in the Storage class field of the
Model Explorer, and you specified its Value property as "1."
So, in terms of ANSI-C syntax, you have said
#define parama 1;. Now you select Force upper case in the
#define naming field of the Symbols pane of the
Configuration Parameters dialog box. The result of all of
this is as follows. "PARAMA" appears in the generated code file
every time this parameter name appears. In the compiled
executable file, "1" appears every time "PARAMA" appears in
the generated code file.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

A Referenced Tables

A-4

In the #define naming field, select Custom M-function to
write your own naming rule that changes all of these
parameter names in the model to identifiers in the generated
code, in the same way. Then you must write an M-function to
accomplish this. For details on writing a MATLAB function,
see “Functions” in the MATLAB documentation.

Of course, there is a wide variety of possibilities. Some
examples are

• Remove all underscore characters in all signal names

• Add underscores before a capital letter in all parameter
names

• Make all identifiers in the generated code uppercase

Then you save the function as a .m file, place it in any folder
in the MATLAB path, and type its filename in the
M-function field under the #define naming field.

Select Force upper case or Force lower case to change
case as desired.

Select None to make no change to the #define names. With
this selection, after code generation, all of them will appear
as identifiers in the source code exactly as they appear in the
model.

M-function If you selected Custom M-function in the #define naming
field, place the name of the .m file here, with or without the
.m extension. Otherwise, ignore this field.

Parameter
naming

Allows you to specify one rule by which all of the model’s
parameter names change the same way, so that they appear
as identifiers in the generated code as you want. The
selections in this field have the same functions as described
above for #defines, except they apply to parameter names.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

MPF-Related Panes on Configuration Dialog Box

A-5

M-function If you selected Custom M-function in the Parameter
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Signal
naming

Allows you to specify one rule by which all of the model’s
signal names change the same way, so that they appear as
identifiers in the generated code as you want. The selections
in this field have the same functions as described above for
#defines, except they apply to signal names.

M-function If you selected Custom M-function in the Signal naming
field, place the name of the .m file here, with or without the
.m extension. Otherwise, ignore this field.

Templates Code
templates

A code template organizes all of the generated files that,
primarily, contain functions but not identifiers.

Source file
(*.c)
template

The source code template organizes C-code files. These
include, for example, the main .c or any of the .c files that
contain functions that Real-Time Workshop Embedded Coder
generates for the open model.

Header file
(*.h)
template

The header code template organizes the .h file that includes
the prototypes of these functions. (See Source file (*.c)
template just above.)

Data
templates

A data template organizes all of the generated files that
contain only identifiers (data), not functions (code).

Source file
(*.c)
template

The source data template organizes the .c file that contains
definitions of variables of global scope.

Header file
(*.h)
template

The header data template organizes the .h file that can
contain declarations of variables of global scope. (See Source
file (*.c) template just above.)

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

A Referenced Tables

A-6

Custom
templates

A custom template has priority over the code and data
templates in organizing the generated files. As its name
suggests, this template is for advanced users who want to
customize how the generated files are organized, by using
this one template. For details, see “Custom File Processing”
in the Real-Time Workshop Embedded Coder documentation.

Data
Placement

Data
definition

In this field, you select the .c file where the definitions of
variables of global scope will be located. You can place these
in a single .c file that is separate from the .c files where the
model’s functions are located, if desired.

If you choose Data defined in single separate source
file, the data source template specified in the Source file
(*.c) template field of the Templates pane (for Data
templates) will be used. This template file organizes the single
separate source file. You must also specify the filename of this
single separate source file itself in the Data definition
filename field below.

Or, you can place these definitions in the .c files where the
functions are located. To do this you select Data defined in
source file. In this case, the source template will not be used.
There may be one function .c file or multiple function .c files,
based on the file partitioning previously selected in Simulink
for the model. If there are multiple files, and you select Data
defined in source file, all of the definitions will be placed
in their respective function files.

If you choose the default Auto, Real-Time Workshop
Embedded Coder determines where the definitions will be
located.

Data
definition
filename

This field is available only if you selected Data defined in
single separate source file in the Data definition field.
Specify here the name of this source file.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

MPF-Related Panes on Configuration Dialog Box

A-7

Data
declaration

In this field, you select the file where declarations will be
located (extern, typedef and #define statements). You can
place these in a single .h file that is separate from the .c files
where the model’s functions are located, if desired.

If you choose Data declared in single separate header
file, the data header template specified in the Header file
(*.h) template field of the Templates pane (for Data
templates) will be used. This template file organizes the single
separate header file. You must also specify the filename of this
single separate header file itself in the Data declaration
filename field below.

Or, you can place these declarations in the .c files where the
functions are located. To do this you select Data declared in
source file. In this case, the data header template will not
be used. As mentioned previously, there may be one function
.c file or multiple function .c files, based on the file
partitioning previously selected in Simulink for the model. If
there are multiple files, and you select Data declared in
source file, all of the declarations will be placed in their
respective function files.

If you choose the default Auto, Real-Time Workshop
Embedded Coder determines where the declarations will be
located.

Data
declaration
filename

This field is available only if you selected Data declared in
single separate header file in the Data declaration
field. Specify here the name of this header file.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

A Referenced Tables

A-8

#include file
delimiter

This field allows you to select the #include file delimiter used
in those generated files that contain the #include
preprocessor directive for MPT data objects.

If you select Auto, Real-Time Workshop Embedded Coder
determines the delimiter.

If you select #include header.h , the double-quotation
delimiter is used.

If you select #include <header.h>, the angle-bracket
delimiter is used.

Module
naming

In this field, you select whether or not to name the module.
This is used in conjunction with the Owner property of a data
object in the Model Explorer dialog box to constitute what is
termed “ownership.” For details, see “Ownership” on page 5-8
and Table A-7, Effects of Ownership Settings, on page A-37.

If you do want to specify the module name, you can select the
convenient Same as model. This avoids having to type in a
name in the Module name field described below.

Module
name

This field is available only if you selected User specified in
the Module naming field. Type the desired module name
according to ANSI C conventions for naming identifiers.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

MPF-Related Panes on Configuration Dialog Box

A-9

Signal
display level

This field allows you to specify whether or not the code
generator declares a signal data object as global data in the
generated code. The number you specify in this field is
relative to the number you specify in the Persistence level
field on the Module Explorer dialog box in “Setting Property
Values” on page 3-15. The Signal display level number is for
all MPT signal data objects in the model. The Persistence
level number is for a particular MPT signal data object. If the
Persistence level is equal to or less than the Signal display
level, the signal will appear in the generated code as global
data with all of the properties (custom attributes) specified in
“Setting Property Values” on page 3-15. For example, this
would occur if Persistence level is 2 and Signal display
level is 5.

Otherwise, the code generator automatically will determine
how the particular signal data object will appear in the
generated code. Depending on the settings on the
Optimization pane of the Configuration parameters dialog
box, the signal data object could appear in the code as local
data and thus have none of the custom attributes you
specified for that data object. Or, based on expression folding,
the code generator could remove the data object so that it
does not appear in the code. (See Controlling and Optimizing
the Generated Code in the Real-Time Workshop Embedded
Coder documentation for details on optimization.)

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

A Referenced Tables

A-10

Parameter
tune level

This field allows you to specify whether or not the code
generator declares a parameter data object as tunable global
data in the generated code.

The number you specify in this field is relative to the number
you specify in the Persistence level field on the Module
Explorer dialog box in “Setting Property Values” on
page 3-15. The Parameter tune level number is for all MPT
parameter data objects in the model. The Persistence level
number is for a particular MPT parameter data object. If the
Persistence level is equal to or less than the Parameter
tune level, the parameter will appear in the generated code
with all of the properties (custom attributes) specified in
“Setting Property Values” on page 3-15, and thus is tunable.
For example, this would occur if Persistence level is 2 and
Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code by
a #define preprocessor directive, and thus is not tunable.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

MPF-Related Panes on Configuration Dialog Box

A-11

Note that, in the initial stages of development, you may be
more concerned about debugging than code size. Or, you may
want to ensure that one or more particular data objects
appear in the code so that you can analyze intermediate
calculations of an equation. In this case, you may want to
specify the Parameter tune level (Signal display level for
signals) to be higher than Persistence level for some or all
MPT parameter (or signal) data objects. This results in larger
code size, because the code generator will declare the
parameter (or signal) data objects as global data, which have
all the custom properties you specified. As you approach
production code generation, however, you may have more
concern about reducing the size of the code and less need for
debugging or intermediate analyses. In this stage of the
tradeoff, you could make the Parameter tune level (Signal
display level for signals) greater than Persistence level for
one or more data objects, generate code and observe the
results. Repeat until satisfied.

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

A Referenced Tables

A-12

Source of
initial values

This field allows you to select the source that initializes each
of the model’s signals in the generated code. You can select
Model or Data object.

If you accept Model, the statement the code generator places
in the file for each signal is

type identifier = zero;, where identifier corresponds
to the signal in the model, and zero is 0.0 or 0, depending
on the type. The model selection always initializes the value
to zero.

If you select Data object, the statement the code generator
places in the file is

type identifier = value;, where value is the Initial
value property value you entered for each signal data object
in the Model Explorer. (See “Setting Property Values” on
page 3-15.)

Table A-1: MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

Template Symbols and Rules

A-13

Template Symbols and Rules
The following tables describe all MPF template symbols and rules for using
these. The location of a symbol in one of the MPF template files
(code_c_template.cgt, code_h_template.cgt, data_c_template.cgt, or
data_h_template.cgt) determines where the items associated with this
symbol are located in the corresponding generated file.

Table A-2: Template Symbols

Symbol Name* (Each must be
enclosed within %< >)

Symbol Group Symbol
Scope

Symbol Description
(What the symbol
puts in the
generated file)

Abstract Documentation N/A User-supplied
description of the
model or file. Placed
in the generated file
based on the
Stateflow note,
Simulink annotation,
or DocBlock on the
model.**

Banner Documentation N/A Comments located
near top of the file.
Contains information
that includes
versions of model
and Real-Time
Workshop, and date
file was generated.

CFunctionCode Functions File All of the C
functions. Must be at
the bottom of the
template.

A Referenced Tables

A-14

Created Documentation N/A Date when model
was created. From
Created on field on
Model Properties
dialog box.

Creator Documentation N/A User who created
model. From
Created by field on
Model Properties
dialog box.

Date Documentation N/A Date file was
generated. Taken
from computer clock.

Declarations Base Data declaration of

any signal or param-

eter. For example,

extern real_T glo-

balvar;.

Defines Base File Any necessary
#defines of .h files.

Definitions Base File Data definition of
any signal or
parameter.

Table A-2: Template Symbols (Continued)

Symbol Name* (Each must be
enclosed within %< >)

Symbol Group Symbol
Scope

Symbol Description
(What the symbol
puts in the
generated file)

Template Symbols and Rules

A-15

Description Documentation N/A Description of model.
From Model
description field on
Model Properties
dialog box.

Documentation Base N/A Comments about
how to interpret the
generated files from
Real-Time Workshop.

Enums Base File Enumerated data
type definitions.

ExportAccessMethods Defines Global External #define
definitions that
correspond to the
alternate names in
the data objects.

ExternalCalibrationLookup1D Declarations External ***

ExternalCalibrationLookup2D Declarations External ***

ExternalCalibrationScalar Declarations External ***

ExternalVariableScalar Declarations External ***

FileName Documentation N/A Name of the
generated file.

FilescopeCalibrationLookup1D Definitions File ***

FilescopeCalibrationLookup2D Definitions File ***

FilescopeCalibrationScalar Definitions File ***

Table A-2: Template Symbols (Continued)

Symbol Name* (Each must be
enclosed within %< >)

Symbol Group Symbol
Scope

Symbol Description
(What the symbol
puts in the
generated file)

A Referenced Tables

A-16

FilescopeVariableScalar Definitions File ***

Functions Base File Generated function
code.

GlobalCalibrationLookup1D Definitions Global ***

GlobalCalibrationLookup2D Definitions Global ***

GlobalCalibrationScalar Definitions Global ***

GlobalVariableScalar Definitions Global ***

History Documentation N/A User-supplied
revision history of
the generated files.
Placed in the
generated file based
on the Stateflow
note, Simulink
annotation, or
DocBlock on the
model.**

Includes Base File #include
preprocessor
directives.

LastModificationDate Documentation N/A Date when model
was last saved. From
Last saved on field
on Model Properties
dialog box.

Table A-2: Template Symbols (Continued)

Symbol Name* (Each must be
enclosed within %< >)

Symbol Group Symbol
Scope

Symbol Description
(What the symbol
puts in the
generated file)

Template Symbols and Rules

A-17

LastModifiedBy Documentation N/A User who last saved
model. From Last
saved by field on
Model Properties
dialog box.

LocalDefines Defines File #define preprocessor
directives from
code-generation data
dictionary.

LocalMacros Defines File C macros local to the
file.

ModelName Documentation N/A Name of the model.

ModelVersion Documentation N/A Version number of
the Simulink model.

ModifiedBy Documentation N/A Name of user who
last modified the
model. From Model
version field on
Model Properties
dialog box.

ModifiedComment Documentation N/A

ModifiedDate Documentation N/A Date model was last
modified before code
was generated.

ModifiedHistory Documentation N/A Text from Modified
history field on
Model Properties
dialog box.

Table A-2: Template Symbols (Continued)

Symbol Name* (Each must be
enclosed within %< >)

Symbol Group Symbol
Scope

Symbol Description
(What the symbol
puts in the
generated file)

A Referenced Tables

A-18

Notes Documentation N/A User-supplied
miscellaneous notes
about the model or
generated files.
Placed in the
generated file based
on the Stateflow note,
Simulink annotation,
or DocBlock on the
model.**

ToolVersion Documentation N/A A list of the versions
of the toolboxes used
in generating the
code.

Types Base Data types of
generated code.

* All symbol names must be enclosed between %< >. For example, %<CFunctions>.

** See “Entering Chart Notes” in the Stateflow documentation, “Annotations” in the Using
Simulink documentation, or “DocBlock” in the Simulink documentation. “<S:symbol name>”
must precede the note or annotation on the model (without the quotation marks), where symbol
name is the name of the MPF symbol. The code generator searches for this and then will
populate the generated file with the note or annotation. For example, if "<S:History>This is
the history of this model." is a note or annotation on the model, and "HISTORY:
%<History>" is on the template, then "HISTORY: This is the history of this model." will
appear on the generated file including any spaces.

*** The description can be deduced from the symbol name. For example,
ExternalCalibrationLookup2D is a symbol that identifies a two-dimensional lookup table. It
contains calibratable data of external scope (global scope from the perspective of the present
file).

Table A-2: Template Symbols (Continued)

Symbol Name* (Each must be
enclosed within %< >)

Symbol Group Symbol
Scope

Symbol Description
(What the symbol
puts in the
generated file)

Template Symbols and Rules

A-19

Table A-3: Parent-Child Relationships of Template Symbols

Symbol Group Symbol Names in This Group

Base (Parents) Declarations

Defines

Definitions

Documentation

Enums

Functions

Includes

Types

Declarations ExternalCalibrationLookup1D

ExternalCalibrationLookup2D

ExternalCalibrationScalar

ExternalVariableScalar

Defines LocalDefines

LocalMacros

ExportAccessMethods

Definitions FilescopeCalibrationLookup1D

FilescopeCalibrationLookup2D

FilescopeCalibrationScalar

FilescopeVariableScalar

GlobalCalibrationLookup1D

GlobalCalibrationLookup2D

GlobalCalibrationScalar

GlobalVariableScalar

A Referenced Tables

A-20

Documentation Abstract

Banner

Created

Creator

Date

Description

FileName

History

LastModificationDate

LastModifiedBy

ModelName

ModelVersion

ModifiedBy

ModifiedComment

ModifiedDate

ModifiedHistory

Notes

ToolVersion

Functions CFunctionCode

Types This parent has no children.

Table A-3: Parent-Child Relationships of Template Symbols (Continued)

Symbol Group Symbol Names in This Group

Template Symbols and Rules

A-21

Table A-4: Rules for Modifying or Creating a Template

Rules for All MPF Templates:

1 Place a symbol on a template within the %< > delimiter. For example, the symbol named
IncludeFile should look like this on a template: %<IncludeFile>. Note that symbol names are
case sensitive.

2 Place a symbol on a template where desired. Its location on the template determines where the
item associated with this symbol is located in the generated file. If no item is associated with
it, the symbol is ignored.

3 Place text without the %< > delimiter for that text to appear in the generated file. For example,
"HISTORY: " on the template will result in "HISTORY: " verbatim (including the space after
the colon) at the corresponding location in the generated file.

4 Use the .cgt extension for every template filename. (“cgt” stands for code generation
template.)

5 Note that %% $Revision: x.y $ appears at the top of the MathWorks supplied templates. This
is for internal MathWorks use only. It does not need to be placed on a user-defined template
and does not show in a generated file.

6 Place comments on the template between /* */ as in standard ANSI C. This will result in
/*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols. They are listed in Table A-3,
Parent-Child Relationships of Template Symbols, on page A-19. Each symbol in the Base
group is a parent. For example, Declarations is a parent symbol.

8 Each symbol in a non-Base group is a child. For example, LocalMacros is a child.

9 Except for Documentation children, all children must be placed after their parent and before
the Functions symbol. Children can be in any order. They can be anywhere in the template
after their parent, even after another parent. For example, if the Defines parent is on line 23
of the template and the Declarations parent is on line 32, the Defines child LocalDefines can
be on any line on or after line 24, even on line 33.

A Referenced Tables

A-22

10 Documentation children can be located before or after their parent in any order anywhere in
the template.

11 If a non-Documentation child is missing from the template, the code generator places the
information associated with this child at its parent location in the generated file.

12 If a Documentation child is missing from the template, the code generator omits the
information assoicated with that child from the generated file.

Table A-4: Rules for Modifying or Creating a Template (Continued)

Rules for All MPF Templates:

Parameter and Signal Properties

A-23

Parameter and Signal Properties
The following table describes the properties and property values for all
mpt.Parameter and mpt.Signal data objects that appear on the Model
Explorer dialog box. Also, a table describes the effects that example changes
to property values have on the generated code.

A Referenced Tables

A-24

Table A-5: Parameter and Signal Property Values

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

Both User object type *auto Prenamed and predefined
property sets that are
registered in the
custom_user_object_type_
info.m file. (See the procedure
“Registering User Object
Types” on page 3-10.) This field
is unavailable if no user object
type is registered.

Select auto if this field is
available but you do not want
to apply the properties of a user
object type to a selected data
object. The fields on the Model
Explorer dialog box are
populated with default values.

Any user object type
name listed

Select a user object type name
to apply the properties and
values that you associated with
this name in the
custom_user_object_type_
info.m file. The fields on the
Model Explorer are
automatically populated with
those values.

Parameter and Signal Properties

A-25

Parameter
Only

Value *0 The data type and numeric
value of the data object. For
example, int8(5). The numeric
value is used as an initial
parameter value in the
generated code.

Both Data type Use to specify the data type for
an mpt.Signal data object, but
not for an mpt.Parameter data
object. The data type for an
mpt.Parameter data object is
specified in the Value field
above. See “Specifying Data
Types,” “Data Type Functions,”
and “Data Type Classes” in the
Simulink documentation.

Both Units *null Units of measurement of the
signal or parameter. (Enter text
in this field.)

Both Dimensions *-1 The dimension of the signal or
parameter.

Both Complexity *auto Complexity specifies whether
the signal or parameter is a
real or complex number. Select
auto for the code generator to
decide.

real

complex

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

A Referenced Tables

A-26

Signal Only Sample time *-1 Model or block execution rate.

Signal Only Sample mode *auto Determines how the signal
propagates through the model.
Select auto for the code
generator to decide.

Signal Only Sample based The signal propagates through
the model one sample at a time.

Signal Only Frame based The signal propagates through
the model in batches of
samples.

Both Minimum *0.0 The minimum value to which
the parameter or signal is
expected to be bound. (Enter
information using a dialog box.)

Any number within
the minimum range of
the parameter or
signal. (Based on the
data type and
resolution of the
parameter or signal.)

Both Maximum *0.0 Maximum value to which the
parameter or signal is expected
to be bound. (Enter information
using a dialog box.)

Code generation
options

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

Parameter and Signal Properties

A-27

Storage class Note that an auto selection for
a storage class tells Real-Time
Workshop to decide how to
declare and store the selected
parameter or signal.

Both Default
(Custom)

Real-Time Workshop
Embedded Coder decides how
to declare the data object.

Both Global
(Custom)

Global (Custom) is the
default storage class.

Ensures that the code
generator places no qualifier in
the data object’s declaration.

Both Memory
section

*Default Memory section allows you to
specify storage directives for
the data object. Default
ensures that the code generator
places no type qualifier and no
pragma statement with the
data object’s declaration.

Both MemConst Places the const type qualifier
in the declaration.

Both MemVolatile Places the volatile type
qualifier in the declaration.

Both MemConstVolatile Places the const volatile
type qualifier in the
declaration.

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

A Referenced Tables

A-28

Both Header file Name of the file used to import
or export the data object. This
file contains the declaration
(extern) to the data object.

Both Owner *null The name of the module that
owns this signal or parameter.
This is used to help determine
the ownership of a definition.
For details, see “Ownership” on
page 5-8 and Table A-7, Effects
of Ownership Settings, on
page A-37.

Both Definition
file

*Blank Name of the file that defines
the data object.

Any valid text string.
(We recommend that
this string be concise,
that is, contain
alphabet or numeric
characters,
underscore, no spaces.)

Both Alternate
name

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

Parameter and Signal Properties

A-29

Both Persistence
level

The number you specify is
relative to Signal display level
or Parameter tune level on
the Data Placement pane of
the Configuration
Parameters dialog box. For a
signal, allows you to specify
whether or not the code
generator declares the data
object as global data. For a
parameter, allows you to
specify whether or not the code
generator declares the data
object as tunable global data.
See Signal display level and
Parameter tune level in
Table A-1, MPF Elements on
Configuration Parameters
Panes, on page A-2.

Both Bitfield
(Custom)

Embeds Boolean data in a
named bit field.

Struct name Name of the struct into which
the object’s data will be packed.

Parameter
Only

Const
(Custom)

Places the const type qualifier
in the declaration.

Parameter
Only

Header file See above.

Parameter
Only

Owner See above.

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

A Referenced Tables

A-30

Parameter
Only

Definition
file

See above.

Parameter
Only

Alternate
name

See above.

Parameter
Only

Persistence
level

See above.

Both Volatile
(Custom)

Places the volatile type
qualifier in the declaration.

Both Header file See above.

Both Owner See above.

Both Definition
file

See above.

Both Alternate
name

See above.

Both Persistence
level

See above.

Parameter
Only

ConstVolatile
(Custom)

Places the const volatile
type qualifier in declaration.

Parameter
Only

Header file See above.

Parameter
Only

Owner See above.

Parameter
Only

Definition
file

See above.

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

Parameter and Signal Properties

A-31

Parameter
Only

Alternate
name

See above.

Parameter
Only

Persistence
level

See above.

Parameter
Only

Define
(Custom)

Represents parameters with a
#define macro.

Parameter
Only

Header file See above.

Parameter
Only

Alternate
name

See above.

Both ExportToFile
(Custom)

Generates global variable
definition, and generates a
user-specified header (.h) file
that contains the declaration
(extern) to that variable.

Both Memory
section

See above.

Both Header file See above.

Both Definition
file

See above.

Both ImportFromFile
(Custom)

Includes predefined header
files containing global variable
declarations, and places the
#include in a corresponding
file. Assumes external code
defines (allocates memory) for
the global variable.

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

A Referenced Tables

A-32

Both Data access *Direct Allows you to specify whether
the identifier that corresponds
to the selected data object
stores data of a data type
(Direct) or stores the address
of the data (a pointer).

Both Pointer If you select Pointer, the code
generator places * before the
identifier in the generated
code.

Header file See above.

Both Struct
(Custom)

Embeds data in a named
struct to encapsulate sets of
data.

Both Struct name See above.

Signal Only GetSet
(Custom)

Reads (gets) and writes (sets)
data using functions.

Signal Only Header file See above.

Signal Only Get function Specify the Get function.

Signal Only Set function Specify the Set function.

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

Parameter and Signal Properties

A-33

Both Alias *null As explained in detail in
“Applying Naming Rules to
Identifiers Globally” on
page 3-19, for an mpt data
object (identifier), selecting the
Alias overrides naming rule
check box causes the name you
specify in the Alias field to
override the naming rule
selection you make on the
Configuration Parameters
dialog box. But for a Simulink
data object, selecting other
than None in a naming rule
field overrides Alias on the
Model Explorer regardless of
whether or not you specify an
Alias name. (The Alias
overrides naming rule check
box is not available for a
Simulink data object.)

Any valid ANSI C
variable name

Alias overrides
naming rule

See Alias above.

Signal Only Initial value Numeric value used as an
initial value in the generated
code.

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

A Referenced Tables

A-34

Both Description *null Text description of the
parameter or signal. Appears
as a comment beside the signal
or parameter’s identifier in the
generated code.

Any text string

Table A-5: Parameter and Signal Property Values (Continued)

Parameter
Class, Signal
Class, or Both
Classes

Property Available Property
Values
(* Indicates Default)

Description

Parameter and Signal Properties

A-35

Table A-6: Some Examples of the Effect of Property Value Changes on Generated Code

What I noticed when
inspecting the .c file

Change I made to
property value settings

What I noticed after
regenerating and reinspecting
the .c file

Example 1:
Parameter data objects can
be declared or defined as
constants. I know that the
data object GAIN is a
parameter. I want this to be
declared or defined in the .c
file as a variable. But I notice
that GAIN is declared as a
constant by the statement
const real_T GAIN = 5.0;.
Also, this statement is in the
constant section of the file.

In the Model Explorer
dialog box, I clicked the
data object GAIN. I noticed
that the property value for
its Memory section
property is set at MemConst.
I changed this to Default.

I notice two differences. One is
that now GAIN is declared as a
variable with the statement
real_T GAIN = 5.0;. The second
difference is that the declaration
now is located in the MemConst
memory section in the .c file.

Example 2:
I notice again the declaration
of GAIN in the .c file
mentioned in Example 1. It
appears as real_T GAIN =
5.0;. But I have changed my
mind. I want data object GAIN
to be #define.

I changed the Storage
class selection to Define
(Custom).

GAIN is no longer declared in the
.c file as a MemConst parameter.
Rather, it now is defined as a
#define macro by the code
#define GAIN 5.0, and this is
located near the top of the .c file
with the other preprocessor
directives.

A Referenced Tables

A-36

Example 3:
I changed my mind again
after doing Example 2. I do
want GAIN defined using the
#define preprocessor
directive. But I do not want to
include the #define in this
file. I know it exists in
another file and I want to
reference that file.

On the Model Explorer
dialog box, I notice that
the property value for the
Header file property is
blank. I changed this to
''filename.h''. (I chose the
ANSI C double quote
mechanism for the
#include, but could have
chosen the angle bracket
mechanism.) Also, it is
necessary that I make the
user-defined filename.h
available to the compiler,
placing it either in the
system path or local
directory.

The #define GAIN 5.0 is no
longer in this .c file. Instead, the
#include ''filename.h'' code
appears as a preprocessor
directive at the top of the file.

Example 4:
I have one more change I
want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the
.c file reads
real_T data_in = 0.0; I
want to replace this in all
locations in the .c with an
alias.

In the Model Explorer, I
selected the data object
data_in. I noticed that the
Alias property is blank. I
changed this to
data_in_alias, which I
know is a valid ANSI C
variable name.

The identifier
data_in_alias
now appears in the .c file
everywhere data_in appeared.

Table A-6: Some Examples of the Effect of Property Value Changes on Generated Code (Continued)

What I noticed when
inspecting the .c file

Change I made to
property value settings

What I noticed after
regenerating and reinspecting
the .c file

Interdependent Settings

A-37

Interdependent Settings
The following tables show the effects that example changes to the
interdependent MPF settings have on the generated code. See “Example
Settings” on page 5-10.

Table A-7: Effects of Ownership Settings

Row
Number

Module Naming
Setting

Owner
Setting

Effect*

1 Not specified** Blank** There is a definition for the selected
data object. The code generator
places this definition in the .c
source file that uses it. There is also
an extern declaration for this data
object. The code generator places
this extern declaration in one or
more .c source files, as needed.

2 Not specified** A name is
specified.

There is no definition for the
selected data object. But there is an
extern declaration for the selected
data object. This extern declaration
is placed in one or more .c source
files, as needed.

3 Either Same as
model or User
specified is
selected.

Blank** Same as Row 1.

4 Either Same as
model or User
specified is
selected, and this
name is the same as
that specified as the
Owner property.

A name is specified
and it is the same
as that specified in
the Module
naming (Module
name) field.

Same as Row 1.

A Referenced Tables

A-38

5 Either Same as
model or User
specified is
selected, and this
name is different
than that specified
as the Owner
property.

A name is specified
but it is different
from that specified
in the Module
naming (Module
name) field.

Same as for Row 2.

* See also “Ownership” on page 5-8.

** Default

Table A-7: Effects of Ownership Settings (Continued)

Row
Number

Module Naming
Setting

Owner
Setting

Effect*

Table A-8: Example Settings and Resulting Generated Files

Data
Def.

Data
Dec.

Owner-
ship*

Defin.
File**

Header
File

Generated
Files

Example
Settings 1
(Rd-Write
Example)

Data
defined
in
source
file

Data
dec.in
source
file

Blank Blank Blank .c source file

Example
Settings 2
(Owner-
ship
Example)

Data
defined
in
source
file

Data
dec.in
source
file

Name
of
module
spec-
ified

Blank Blank .c source file

Interdependent Settings

A-39

Example
Settings 3
(Header
File
Example)

Data
defined
in
source
file

Data
dec.in
source
file

Blank Blank Desired
include
file-
name
speci-
fied.

.c source file

Example
Settings 4
(Def. File
Example)

Data
defined
in
source
file

Data
dec.in
source
file

Blank Desired
defini-
tion file-
name
speci-
fied.

Desired
include
file-
name
speci-
fied.

.c source file; .c
definition file*; .h
definition file*

Example
Settings 5

Data
defined
in
single
sep.
source
file

Data
dec.in
source
file

Blank Blank Blank .c source file; global
.c

Example
Settings 6

Data
defined
in
single
sep.
source
file

Data
dec. in
single
sep.
header
file

Blank Blank Blank .c source file;
global .c;
global.h

Example
Settings 7

Data
defined
in
single
sep.
source
file

Data
dec. in
single
sep.
header
file

Name
of
module
speci-
fied

Blank Blank .c source file;
global .c;
global.h;

Table A-8: Example Settings and Resulting Generated Files (Continued)

Data
Def.

Data
Dec.

Owner-
ship*

Defin.
File**

Header
File

Generated
Files

A Referenced Tables

A-40

Example
Settings 8

Data
defined
in
single
sep.
source
file

Data
dec. in
single
sep.
header
file

Blank Blank Desired
include
file-
name
speci-
fied.

.c source file;
global.c;
global.h

* “Blank” in ownership setting means Not specified is selected in the Module naming field on
the Data Placement pane, and the Owner property on the Model Explorer is blank. “Name of
module specified” can be a variety of ownership settings as defined in Table A-7, Effects of
Ownership Settings, on page A-37.

** The code generator generates a definition .c and declaration .h file for every data object for
which you specified a definition filename (unless you selected #DEFINE for the Memory section
property). For example, if you specify the same definition filename for all data objects, only one
definition .c and only one declaration .h is generated. But if you specify a definition filename for
each data object, the code generator generates one definition .c file for each data object plus one
declaration .h file for each data object.

Table A-8: Example Settings and Resulting Generated Files (Continued)

Data
Def.

Data
Dec.

Owner-
ship*

Defin.
File**

Header
File

Generated
Files

Index-1

Index

A
additional options

adding custom comments 4-4
delimiter for all #includes 4-2
source of initial values 4-3

Alias property
applying naming rules 3-19

C
comments

enabling custom 4-4
Configuration Parameters dialog box 1-4

D
daexplr command 3-15
data dictionary

adding data objects 3-11
introduction 3-2
See also data objects

data object wizard 3-13
data objects

adding missing 3-13
external 3-11
naming rules

changing all #defines 3-20
changing all parameter names 3-21
changing all signal names 3-22

properties A-24
setting property values 3-15
wizard 3-13

data types
registering 3-4
table of MathWorks and user 3-7

#defines

changing all 3-20

Definition File priority 5-8
Description property 4-4

E
external data dictionary

importing data objects from 3-11
external data objects

importing 3-11

G
Global priority 5-7

H
Header File priority 5-8

I
#include

specifying delimiter 4-2
interdependent settings 5-2

M
.mat file

loading data objects from 3-11
M-functions

#define naming 3-20
parameter naming 3-21
signal naming 3-22

Model Explorer
MATLAB command 3-16
parameter and signal properties A-24

MPF
introduction 1-2

Index

Index-2

opening 1-4

N
naming rules

applying globally 3-19
changing all #defines 3-20
changing all parameter names 3-21
changing all signal names 3-22

O
ownership

effects of settings 5-8
explanation 5-8

Ownership priority 5-8

P
Parameter class 3-3
parameter names

changing all 3-21
preexisting template 2-5
priority and usage

Definition File priority 5-8
Global priority 5-7
Header File priority 5-8
introduction 5-3
Ownership priority 5-8
Read-Write priority 5-4
See also interdependent settings

property values
descriptions A-24
setting 3-15

R
Read-Write priority 5-4

S
Signal class 3-3
signal names

changing all 3-22
source of initial values 4-3
symbols for templates

alphabetical list A-13
groups A-19

T
templates

creating new 2-9
editing 2-9
example with generated file 2-10
rules for creating or modifying A-21
selecting preexisting 2-5
symbol groups A-19
symbols A-13

W
wizard

data object 3-13

	Getting Started
	Introduction
	Opening Model with Desired Settings
	Opening an Empty Model with Initial MPF Settings
	Opening an Empty Model That Uses Settings from Another Model
	Opening an Existing Model That Uses Saved MPF Settings

	Selecting the Desired MPF Procedure

	Selecting and Defining Templates
	Introduction
	Selecting Preexisting Templates
	Generating Code and Inspecting Files

	Defining Templates
	Example Template and Its Generated File

	Managing Data Dictionary
	Introduction
	Registering User Data Types
	Registering User Object Types
	Adding Simulink Data Objects to the Dictionary
	Importing External Data Objects
	Adding Simulink Data Objects with Data Object Wizard
	Setting Property Values

	Applying Naming Rules to Identifiers Globally
	Defining Rules That Change All #defines
	Defining Rules That Change All Parameter Names
	Defining Rules That Change All Signal Names

	Applying User Data Types to Signal Objects in the Generated Code
	Inspecting Code and Editing the Dictionary

	Customizing with Additional Options
	Ensuring Delimiter Is Specified for All #Includes
	Selecting Source That Initializes Signals
	Adding Custom Comments
	Adding Global Comments

	Managing File Placement of Data Definitions and Declarations
	Introduction
	Priority and Usage
	Read-Write Priority
	Global Priority
	Remaining Priorities

	Example Settings

	Referenced Tables
	MPF-Related Panes on Configuration Dialog Box
	Template Symbols and Rules
	Parameter and Signal Properties
	Interdependent Settings

	Index

